Suppr超能文献

光转导的钙离子依赖性调节

Ca2+ -dependent regulation of phototransduction.

作者信息

Stephen Ricardo, Filipek Sławomir, Palczewski Krzysztof, Sousa Marcelo Carlos

机构信息

Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA.

出版信息

Photochem Photobiol. 2008 Jul-Aug;84(4):903-10. doi: 10.1111/j.1751-1097.2008.00323.x. Epub 2008 Mar 12.

Abstract

Photon absorption by rhodopsin triggers the phototransduction signaling pathway that culminates in degradation of cGMP, closure of cGMP-gated ion channels and hyperpolarization of the photoreceptor membrane. This process is accompanied by a decrease in free Ca(2+) concentration in the photoreceptor cytosol sensed by Ca(2+)-binding proteins that modulate phototransduction and activate the recovery phase to reestablish the photoreceptor dark potential. Guanylate cyclase-activating proteins (GCAPs) belong to the neuronal calcium sensor (NCS) family and are responsible for activating retinal guanylate cyclases (retGCs) at low Ca(2+) concentrations triggering synthesis of cGMP and recovery of the dark potential. Here we review recent structural insight into the role of the N-terminal myristoylation in GCAPs and compare it to other NCS family members. We discuss previous studies identifying regions of GCAPs important for retGC1 regulation in the context of the new structural data available for myristoylated GCAP1. In addition, we present a hypothetical model for the Ca(2+)-triggered conformational change in GCAPs and retGC1 regulation. Finally, we briefly discuss the involvement of mutant GCAP1 proteins in the etiology of retinal degeneration as well as the importance of other Ca(2+) sensors in the modulation of phototransduction.

摘要

视紫红质对光子的吸收触发了光转导信号通路,该通路最终导致环鸟苷酸(cGMP)降解、cGMP门控离子通道关闭以及光感受器膜超极化。这一过程伴随着光感受器细胞质中游离钙离子(Ca(2+))浓度的降低,Ca(2+)结合蛋白可感知这种降低,从而调节光转导并激活恢复阶段以重新建立光感受器暗电位。鸟苷酸环化酶激活蛋白(GCAPs)属于神经元钙传感器(NCS)家族,负责在低Ca(2+)浓度下激活视网膜鸟苷酸环化酶(retGCs),从而触发cGMP的合成以及暗电位的恢复。在此,我们综述了关于GCAPs中N端肉豆蔻酰化作用的最新结构见解,并将其与其他NCS家族成员进行比较。我们结合可获得的肉豆蔻酰化GCAP1的新结构数据,讨论了之前确定GCAPs中对retGC1调节重要区域的研究。此外,我们提出了一个关于GCAPs中Ca(2+)触发的构象变化以及retGC1调节的假设模型。最后,我们简要讨论了突变型GCAP1蛋白在视网膜变性病因中的作用,以及其他Ca(2+)传感器在光转导调节中的重要性。

相似文献

1
Ca2+ -dependent regulation of phototransduction.
Photochem Photobiol. 2008 Jul-Aug;84(4):903-10. doi: 10.1111/j.1751-1097.2008.00323.x. Epub 2008 Mar 12.
2
GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.
J Neurosci. 2018 Mar 21;38(12):2990-3000. doi: 10.1523/JNEUROSCI.2985-17.2018. Epub 2018 Feb 12.
3
Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.
J Biol Chem. 2018 May 11;293(19):7457-7465. doi: 10.1074/jbc.RA117.001574. Epub 2018 Mar 16.
4
Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs).
Int J Mol Sci. 2021 Aug 13;22(16):8731. doi: 10.3390/ijms22168731.
5
Mg2+/Ca2+ cation binding cycle of guanylyl cyclase activating proteins (GCAPs): role in regulation of photoreceptor guanylyl cyclase.
Mol Cell Biochem. 2010 Jan;334(1-2):117-24. doi: 10.1007/s11010-009-0328-6. Epub 2009 Dec 2.
6
The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies.
J Mol Biol. 2006 Jun 2;359(2):266-75. doi: 10.1016/j.jmb.2006.03.042. Epub 2006 Apr 3.
8
Structural basis of retinal membrane guanylate cyclase regulation by GCAP1 and RD3.
Front Mol Neurosci. 2022 Sep 8;15:988142. doi: 10.3389/fnmol.2022.988142. eCollection 2022.
9
Guanylate cyclase-activating proteins and retina disease.
Subcell Biochem. 2007;45:71-91. doi: 10.1007/978-1-4020-6191-2_4.

引用本文的文献

1
Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder.
Front Mol Neurosci. 2023 Jan 5;15:1022771. doi: 10.3389/fnmol.2022.1022771. eCollection 2022.
2
The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods.
Nat Struct Mol Biol. 2022 Jan;29(1):32-39. doi: 10.1038/s41594-021-00700-8. Epub 2021 Dec 30.
3
Photoreceptor responses to light in the pathogenesis of diabetic retinopathy.
Vis Neurosci. 2020 Sep 14;37:E007. doi: 10.1017/S0952523820000061.
5
Regulatory mechanism for the transmembrane receptor that mediates bidirectional vitamin A transport.
Proc Natl Acad Sci U S A. 2020 May 5;117(18):9857-9864. doi: 10.1073/pnas.1918540117. Epub 2020 Apr 16.
6
Dimerization of Neuronal Calcium Sensor Proteins.
Front Mol Neurosci. 2018 Nov 2;11:397. doi: 10.3389/fnmol.2018.00397. eCollection 2018.
7
Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing.
Mol Cell Proteomics. 2016 Apr;15(4):1232-45. doi: 10.1074/mcp.M115.055954. Epub 2016 Jan 4.
8
Structure of Guanylyl Cyclase Activator Protein 1 (GCAP1) Mutant V77E in a Ca2+-free/Mg2+-bound Activator State.
J Biol Chem. 2016 Feb 26;291(9):4429-41. doi: 10.1074/jbc.M115.696161. Epub 2015 Dec 24.
10
Current understanding of signal amplification in phototransduction.
Cell Logist. 2014 Jun 4;4:e29390. doi: 10.4161/cl.29390. eCollection 2014.

本文引用的文献

2
Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling.
Nat Rev Neurosci. 2007 Mar;8(3):182-93. doi: 10.1038/nrn2093.
3
The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors.
J Biol Chem. 2007 Mar 23;282(12):8837-47. doi: 10.1074/jbc.M610369200. Epub 2007 Jan 25.
4
G protein-coupled receptor rhodopsin.
Annu Rev Biochem. 2006;75:743-67. doi: 10.1146/annurev.biochem.75.103004.142743.
5
The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies.
J Mol Biol. 2006 Jun 2;359(2):266-75. doi: 10.1016/j.jmb.2006.03.042. Epub 2006 Apr 3.
6
Recoverin improves rod-mediated vision by enhancing signal transmission in the mouse retina.
Neuron. 2005 May 5;46(3):413-20. doi: 10.1016/j.neuron.2005.04.006.
7
A novel GCAP1 missense mutation (L151F) in a large family with autosomal dominant cone-rod dystrophy (adCORD).
Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1124-32. doi: 10.1167/iovs.04-1431.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验