Suppr超能文献

多肢体膜鸟苷酸环化酶信号系统,进化阶梯。

Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder.

作者信息

Duda Teresa, Sharma Rameshwar K

机构信息

The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins Park, PA, United States.

出版信息

Front Mol Neurosci. 2023 Jan 5;15:1022771. doi: 10.3389/fnmol.2022.1022771. eCollection 2022.

Abstract

One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.

摘要

细胞生物学领域的一项重大发现是膜鸟苷酸环化酶信号转导系统的建立。解读其基本、分子、生化和遗传特征,彻底改变了内分泌、心血管和感觉神经元疾病治疗方法的研发过程;最后,它开始在大气二氧化碳中留下印记。膜鸟苷酸环化酶通过其多分支结构实现这一点。贯穿中枢、交感和副交感神经系统的相互连接的分支执行这些功能。它们产生共同的第二信使环磷酸鸟苷(cGMP)来影响生理功能。本综述描述了它们的顺序进化发展、结构组成及其相互作用机制的历史记录。其基本原则是由其第一个分支促肾上腺皮质激素(ACTH)调节信号通路(配套专著)的发现奠定的。它挑战了当时两个普遍存在的教条。首先,存在一个独立于血红素调节的可溶性形式的膜鸟苷酸环化酶的问题。其次,唯一已知的环磷酸腺苷(cAMP)三组分转导系统由GTP结合蛋白调节,因此存在一个单组分转导系统是否能仅响应多肽激素ACTH调节环磷酸鸟苷(cGMP)的问题。本综述越过第一个问题,讲述了环磷酸鸟苷(cGMP)信号通路的进化和复杂性。除了ACTH,至少还有五个额外的分支。每个分支都体现了独特的模块化设计以执行特定的生理功能;例如ATP结合和磷酸化、增加或减少环磷酸鸟苷(cGMP)合成的钙传感器蛋白、对立钙传感器GCAP1和S100B的共表达,以及大气二氧化碳和温度的调节。这些不同的操作方式所提供的复杂性使膜鸟苷酸环化酶能够执行多种功能,如对心血管、感觉神经元和内分泌系统的控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d375/9849996/51d43fd69482/fnmol-15-1022771-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验