van Duin Adri C T, Merinov Boris V, Jang Seung Soon, Goddard William A
Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, USA.
J Phys Chem A. 2008 Apr 10;112(14):3133-40. doi: 10.1021/jp076775c. Epub 2008 Mar 19.
We present the ReaxFF reactive force field developed to provide a first-principles-based description of oxygen ion transport through yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) membranes. All parameters for ReaxFF were optimized to reproduce quantum mechanical (QM) calculations on relevant condensed phase and cluster systems. We validated the use of ReaxFF for fuel cell applications by using it in molecular dynamics (MD) simulations to predict the oxygen ion diffusion coefficient in yttria-stabilized zirconia as a function of temperature. These values are in excellent agreement with experimental results, setting the stage for the use of ReaxFF to model the transport of oxygen ions through the YSZ electrolyte for SOFC. Because ReaxFF descriptions are already available for some catalysts (e.g., Ni and Pt) and under development for other high-temperature catalysts, we can now consider fully first-principles-based simulations of the critical functions in SOFC, enabling the possibility of in silico optimization of these materials. That is, we can now consider using theory and simulation to examine the effect of materials modifications on both the catalysts and transport processes in SOFC.
我们展示了所开发的反应分子动力学(ReaxFF)反应力场,旨在基于第一性原理描述氧离子通过氧化钇稳定氧化锆(YSZ)固体氧化物燃料电池(SOFC)膜的传输过程。ReaxFF的所有参数均经过优化,以重现对相关凝聚相和团簇体系的量子力学(QM)计算结果。我们通过在分子动力学(MD)模拟中使用ReaxFF来预测氧化钇稳定氧化锆中氧离子扩散系数随温度的变化,从而验证了ReaxFF在燃料电池应用中的适用性。这些值与实验结果高度吻合,为使用ReaxFF对SOFC中氧离子通过YSZ电解质的传输过程进行建模奠定了基础。由于已经有一些催化剂(例如Ni和Pt)的ReaxFF描述,并且其他高温催化剂的描述也在开发中,我们现在可以考虑对SOFC中的关键功能进行完全基于第一性原理的模拟,从而实现对这些材料进行计算机模拟优化的可能性。也就是说,我们现在可以考虑使用理论和模拟来研究材料改性对SOFC中催化剂和传输过程的影响。