Walsh Robin, Golden David M
Department of Chemistry, University of Reading, Whiteknights, P.O. Box 224, Reading, RG6 6AD, United Kingdom.
J Phys Chem A. 2008 May 1;112(17):3891-7. doi: 10.1021/jp7116642. Epub 2008 Mar 19.
Experimental data for the title reaction were modeled using master equation (ME)/RRKM methods based on the Multiwell suite of programs. The starting point for the exercise was the empirical fitting provided by the NASA (Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Jet Propulsion Laboratory: Pasadena, California, 2006)1 and IUPAC (Atkinson, R.; Baulch, D. L.; Cox, R. A.; R. F. Hampson, J.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data 2000, 29, 167)2 data evaluation panels, which represents the data in the experimental pressure ranges rather well. Despite the availability of quite reliable parameters for these calculations (molecular vibrational frequencies (Parthiban, S.; Lee, T. J. J. Chem. Phys. 2000, 113, 145)3 and a value (Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1996, 100, 19398)4 of the bond dissociation energy, D298(BrO-NO2) = 118 kJ mol-1, corresponding to DeltaH0o = 114.3 kJ mol-1 at 0 K) and the use of RRKM/ME methods, fitting calculations to the reported data or the empirical equations was anything but straightforward. Using these molecular parameters resulted in a discrepancy between the calculations and the database of rate constants of a factor of ca. 4 at, or close to, the low-pressure limit. Agreement between calculation and experiment could be achieved in two ways, either by increasing DeltaH0o to an unrealistically high value (149.3 kJ mol-1) or by increasing DeltaEd, the average energy transferred in a downward collision, to an unusually large value (>5000 cm-1). The discrepancy could also be reduced by making all overall rotations fully active. The system was relatively insensitive to changing the moments of inertia in the transition state to increase the centrifugal effect. The possibility of involvement of BrOONO was tested and cannot account for the difficulties of fitting the data.
使用基于Multiwell程序套件的主方程(ME)/RRKM方法对标题反应的实验数据进行了建模。这项工作的起点是美国国家航空航天局(桑德,S.P.;芬利森-皮茨,B.J.;弗里德尔,R.R.;戈尔登,D.M.;休伊,R.E.;科尔布,C.E.;库里洛,M.J.;莫利纳,M.J.;穆尔特加特,G.K.;奥尔金,V.L.;拉维尚卡拉,A.R.《用于大气研究的化学动力学和光化学数据,评估第15号》;喷气推进实验室:加利福尼亚州帕萨迪纳,2006年)1和国际纯粹与应用化学联合会(阿特金森,R.;鲍尔奇德,D.L.;考克斯,R.A.;R.F.汉普森,J.;克尔,J.A.;罗西,M.J.;特罗,J.《物理化学参考数据》2000年,29卷,167页)2的数据评估小组提供的经验拟合,其在实验压力范围内相当好地代表了数据。尽管有相当可靠的参数可用于这些计算(分子振动频率(帕尔蒂班,S.;李,T.J.《化学物理杂志》2000年,113卷,145页)3以及键解离能的值(奥兰多,J.J.;廷德尔,G.S.《物理化学杂志》1996年,100卷,19398页)4,D298(BrO-NO2)=118 kJ mol-1,对应于0 K时的ΔH0o = 114.3 kJ mol-1),并且使用了RRKM/ME方法,但对报告的数据或经验方程进行拟合计算绝非易事。使用这些分子参数导致在低压极限或接近低压极限时,计算值与速率常数数据库之间存在约4倍的差异。计算与实验之间的一致性可以通过两种方式实现,要么将ΔH0o增加到不切实际的高值(149.3 kJ mol-1),要么将向下碰撞中转移的平均能量ΔEd增加到异常大的值(>5000 cm-1)。通过使所有整体旋转完全活跃,差异也可以减小。该系统对改变过渡态的转动惯量以增加离心效应相对不敏感。对BrOONO参与的可能性进行了测试,但其无法解释拟合数据的困难。