Suppr超能文献

随机变量二次重整化的临界点与金刚石晶格上无序聚合物模型的相变

Critical points of quadratic renormalizations of random variables and phase transitions of disordered polymer models on diamond lattices.

作者信息

Monthus Cécile, Garel Thomas

机构信息

Service de Physique Théorique, CEA/DSM/SPhT, Unité de Recherche Associée au CNRS, Gif-sur-Yvette Cedex, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021132. doi: 10.1103/PhysRevE.77.021132. Epub 2008 Feb 28.

Abstract

We study the wetting transition and the directed polymer delocalization transition on diamond hierarchical lattices. These two phase transitions with frozen disorder correspond to the critical points of quadratic renormalizations of the partition function. (These exact renormalizations on diamond lattices can also be considered as approximate Migdal-Kadanoff renormalizations for hypercubic lattices.) In terms of the rescaled partition function z=Z/Z(typ) , we find that the critical point corresponds to a fixed point distribution with a power-law tail P(c)(z) ~ Phi(ln z)/z(1+mu) as z-->+infinity [up to some subleading logarithmic correction Phi(ln z)], so that all moments z(n) with n>mu diverge. For the wetting transition, the first moment diverges z=+infinity (case 0<mu<1 ), and the critical temperature is strictly below the annealed temperature T(c)<T(ann). For the directed polymer case, the second moment diverges z(2)=+infinity (case 1<mu<2 ), and the critical temperature is strictly below the exactly known transition temperature T2 of the second moment. We then consider the correlation length exponent nu : the linearized renormalization around the fixed point distribution coincides with the transfer matrix describing a directed polymer on the Cayley tree, but the random weights determined by the fixed point distribution P(c)(z) are broadly distributed. This induces some changes in the traveling wave solutions with respect to the usual case of more narrow distributions.

摘要

我们研究了金刚石分层晶格上的润湿转变和定向聚合物离域转变。这两个具有冻结无序的相变对应于配分函数二次重整化的临界点。(金刚石晶格上的这些精确重整化也可视为超立方晶格的近似Migdal-Kadanoff重整化。)就重新标度的配分函数z = Z/Z(typ)而言,我们发现临界点对应于一个具有幂律尾P(c)(z) ~ Phi(ln z)/z(1 + mu)的不动点分布,当z --> +无穷大时[直至一些次主导对数修正Phi(ln z)],使得所有n > mu的矩z(n)发散。对于润湿转变,第一矩发散z = +无穷大(0 < mu < 1的情况),且临界温度严格低于退火温度T(c) < T(ann)。对于定向聚合物情况,第二矩发散z(2) = +无穷大(1 < mu < 2的情况),且临界温度严格低于第二矩的精确已知转变温度T2。然后我们考虑关联长度指数nu:围绕不动点分布的线性化重整化与描述凯莱树上定向聚合物的转移矩阵一致,但由不动点分布P(c)(z)确定的随机权重分布广泛。这相对于通常更窄分布的情况在行波解中引起了一些变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验