Suppr超能文献

临床决策支持架构演变的四阶段模型。

A four-phase model of the evolution of clinical decision support architectures.

作者信息

Wright Adam, Sittig Dean F

机构信息

Clinical Informatics Research and Development, Partners HealthCare, Boston, MA 02120, USA.

出版信息

Int J Med Inform. 2008 Oct;77(10):641-9. doi: 10.1016/j.ijmedinf.2008.01.004. Epub 2008 Mar 19.

Abstract

BACKGROUND

A large body of evidence over many years suggests that clinical decision support systems can be helpful in improving both clinical outcomes and adherence to evidence-based guidelines. However, to this day, clinical decision support systems are not widely used outside of a small number of sites. One reason why decision support systems are not widely used is the relative difficulty of integrating such systems into clinical workflows and computer systems.

PURPOSE

To review and synthesize the history of clinical decision support systems, and to propose a model of various architectures for integrating clinical decision support systems with clinical systems.

METHODS

The authors conducted an extensive review of the clinical decision support literature since 1959, sequenced the systems and developed a model.

RESULTS

The model developed consists of four phases: standalone decision support systems, decision support integrated into clinical systems, standards for sharing clinical decision support content and service models for decision support. These four phases have not heretofore been identified, but they track remarkably well with the chronological history of clinical decision support, and show evolving and increasingly sophisticated attempts to ease integrating decision support systems into clinical workflows and other clinical systems.

CONCLUSIONS

Each of the four evolutionary approaches to decision support architecture has unique advantages and disadvantages. A key lesson was that there were common limitations that almost all the approaches faced, and no single approach has been able to entirely surmount: (1) fixed knowledge representation systems inherently circumscribe the type of knowledge that can be represented in them, (2) there are serious terminological issues, (3) patient data may be spread across several sources with no single source having a complete view of the patient, and (4) major difficulties exist in transferring successful interventions from one site to another.

摘要

背景

多年来大量证据表明,临床决策支持系统有助于改善临床结果并提高对循证指南的依从性。然而,时至今日,临床决策支持系统在少数机构之外并未得到广泛应用。决策支持系统未被广泛使用的一个原因是将此类系统集成到临床工作流程和计算机系统中相对困难。

目的

回顾并综合临床决策支持系统的历史,并提出将临床决策支持系统与临床系统集成的各种架构模型。

方法

作者对1959年以来的临床决策支持文献进行了广泛回顾,梳理了这些系统并开发了一个模型。

结果

所开发的模型包括四个阶段:独立决策支持系统、集成到临床系统中的决策支持、共享临床决策支持内容的标准以及决策支持的服务模式。此前尚未识别出这四个阶段,但它们与临床决策支持的时间顺序历史非常吻合,并显示出为便于将决策支持系统集成到临床工作流程和其他临床系统中而进行的不断演变且日益复杂的尝试。

结论

决策支持架构的四种演进方法各有独特的优缺点。一个关键教训是,几乎所有方法都面临共同的局限性,没有一种方法能够完全克服:(1)固定的知识表示系统本质上限制了其中可以表示的知识类型;(2)存在严重的术语问题;(3)患者数据可能分散在多个来源,没有一个单一来源能全面了解患者情况;(4)将成功的干预措施从一个机构转移到另一个机构存在重大困难。

相似文献

1
A four-phase model of the evolution of clinical decision support architectures.
Int J Med Inform. 2008 Oct;77(10):641-9. doi: 10.1016/j.ijmedinf.2008.01.004. Epub 2008 Mar 19.
2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
Clinical Decision Support: a 25 Year Retrospective and a 25 Year Vision.
Yearb Med Inform. 2016 Aug 2;Suppl 1(Suppl 1):S103-16. doi: 10.15265/IYS-2016-s034.
5
Electronic Health Records: Then, Now, and in the Future.
Yearb Med Inform. 2016 May 20;Suppl 1(Suppl 1):S48-61. doi: 10.15265/IYS-2016-s006.
7
Decision support in dermatology and medicine: history and recent developments.
Semin Cutan Med Surg. 2012 Sep;31(3):153-9. doi: 10.1016/j.sder.2012.06.005.
8
Intelligent, Autonomous Machines in Surgery.
J Surg Res. 2020 Sep;253:92-99. doi: 10.1016/j.jss.2020.03.046. Epub 2020 Apr 24.
9
A framework and model for evaluating clinical decision support architectures.
J Biomed Inform. 2008 Dec;41(6):982-90. doi: 10.1016/j.jbi.2008.03.009. Epub 2008 Mar 25.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
Large language models for clinical decision support in gastroenterology and hepatology.
Nat Rev Gastroenterol Hepatol. 2025 Aug 22. doi: 10.1038/s41575-025-01108-1.
2
A scoping review of rule-based clinical decision support malfunctions.
J Am Med Inform Assoc. 2024 Oct 1;31(10):2405-2413. doi: 10.1093/jamia/ocae187.
4
Transitioning Cognitive Aids into Decision Support Platforms: Requirements and Design Guidelines.
ACM Trans Comput Hum Interact. 2023 Jun;30(3). doi: 10.1145/3582431. Epub 2023 Jun 10.
5
The Case Manager: An Agent Controlling the Activation of Knowledge Sources in a FHIR-Based Distributed Reasoning Environment.
Appl Clin Inform. 2023 Aug;14(4):725-734. doi: 10.1055/a-2113-4443. Epub 2023 Jun 20.
7
10
Clinical decision support alert malfunctions: analysis and empirically derived taxonomy.
J Am Med Inform Assoc. 2018 May 1;25(5):496-506. doi: 10.1093/jamia/ocx106.

本文引用的文献

2
A description and functional taxonomy of rule-based decision support content at a large integrated delivery network.
J Am Med Inform Assoc. 2007 Jul-Aug;14(4):489-96. doi: 10.1197/jamia.M2364. Epub 2007 Apr 25.
6
A roadmap for national action on clinical decision support.
J Am Med Inform Assoc. 2007 Mar-Apr;14(2):141-5. doi: 10.1197/jamia.M2334. Epub 2007 Jan 9.
7
Service-oriented architecture in medical software: promises and perils.
J Am Med Inform Assoc. 2007 Mar-Apr;14(2):244-6. doi: 10.1197/jamia.M2349.
8
The story behind the development of the first whole-body computerized tomography scanner as told by Robert S. Ledley.
J Am Med Inform Assoc. 2006 Sep-Oct;13(5):465-9. doi: 10.1197/jamia.M2127. Epub 2006 Jun 23.
10
Systematic review: impact of health information technology on quality, efficiency, and costs of medical care.
Ann Intern Med. 2006 May 16;144(10):742-52. doi: 10.7326/0003-4819-144-10-200605160-00125. Epub 2006 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验