Fortmann Jonas, Lutz Marlene, Spreckelsen Cord
Institute of Medical Informatics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.
Smart Medical Technology for Healthcare Consortium of the German Medical Informatics Initiative, Leipzig, Germany.
JMIR Form Res. 2022 Jun 22;6(6):e28013. doi: 10.2196/28013.
Clinical decision support systems often adopt and operationalize existing clinical practice guidelines leading to higher guideline availability, increased guideline adherence, and data integration. Most of these systems use an internal state-based model of a clinical practice guideline to derive recommendations but do not provide the user with comprehensive insight into the model.
Here we present a novel approach based on dynamic guideline visualization that incorporates the individual patient's current treatment context.
We derived multiple requirements to be fulfilled by such an enhanced guideline visualization. Using business process and model notation as the representation format for computer-interpretable guidelines, a combination of graph-based representation and logical inferences is adopted for guideline processing. A context-specific guideline visualization is inferred using a business rules engine.
We implemented and piloted an algorithmic approach for guideline interpretation and processing. As a result of this interpretation, a context-specific guideline is derived and visualized. Our implementation can be used as a software library but also provides a representational state transfer interface. Spring, Camunda, and Drools served as the main frameworks for implementation. A formative usability evaluation of a demonstrator tool that uses the visualization yielded high acceptance among clinicians.
The novel guideline processing and visualization concept proved to be technically feasible. The approach addresses known problems of guideline-based clinical decision support systems. Further research is necessary to evaluate the applicability of the approach in specific medical use cases.
临床决策支持系统通常采用并实施现有的临床实践指南,从而提高指南的可获取性、增强指南的依从性并实现数据整合。这些系统大多使用基于内部状态的临床实践指南模型来得出建议,但并未向用户提供对该模型的全面洞察。
在此,我们提出一种基于动态指南可视化的新颖方法,该方法纳入了个体患者当前的治疗背景。
我们得出了这种增强型指南可视化需要满足的多项要求。使用业务流程和模型表示法作为计算机可解释指南的表示格式,在指南处理中采用基于图形的表示法和逻辑推理的组合。使用业务规则引擎推断特定于上下文的指南可视化。
我们实现并试点了一种用于指南解释和处理的算法方法。通过这种解释,得出并可视化了特定于上下文的指南。我们的实现既可以用作软件库,也提供一个代表性状态转移接口。Spring、Camunda和Drools用作主要的实现框架。对使用该可视化的演示工具进行的形成性可用性评估在临床医生中获得了高度认可。
新颖的指南处理和可视化概念在技术上被证明是可行的。该方法解决了基于指南的临床决策支持系统的已知问题。有必要进行进一步研究以评估该方法在特定医学用例中的适用性。