Suppr超能文献

Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response.

作者信息

Chien K R, Knowlton K U, Zhu H, Chien S

机构信息

Department of Medicine, University of California, San Diego 92093.

出版信息

FASEB J. 1991 Dec;5(15):3037-46. doi: 10.1096/fasebj.5.15.1835945.

Abstract

Studies from both in vivo and in vitro model systems have provided an initial skeleton of the potential signaling pathways that might regulate cardiac genes during growth and hypertrophy. One of the first detectable changes in cardiac gene expression is the activation of a program of immediate early gene expression, which is distinct for the hypertrophic response, and is conserved in multiple models of both in vivo and in vitro hypertrophy. Diverse and distinct hormonal stimuli have been documented to activate several features of the hypertrophic response, including several autocrine and paracrine factors. Although the signaling mechanisms that link these factors with the activation of cardiac gene expression are unclear, recent studies suggest that the activation of protein kinase C may represent one of the most proximal common events in this signaling cascade. The activation of cardiac target genes induces a program of embryonic gene expression, including the atrial natriuretic factor (ANF) gene. The cis sequences that mediate cardiac-specific and inducible expression of an embryonic marker gene (ANF) can be segregated by studies in both cultured cell models and in vivo models of hypertrophy in transgenic mice, suggesting that specific sets of regulatory elements may exist for inducible expression of this class of cardiac gene responses. However, the induction of a constitutively expressed contractile protein gene (MLC-2) is mediated by a set of conserved elements that regulate both cardiac-specific and inducible expression. Finally, a subset of cardiac muscle genes appears to be noninducible during in vivo or in vitro hypertrophy in myocardial cells, demonstrating specificity of transcriptional activation during the hypertrophic process. The development of a bona fide in vivo pressure overload model of hypertrophy in a small animal model that can be genetically manipulated, such as the in vivo murine model recently described, should allow a rigorous analysis of the role of these specific signaling mechanisms in the activation of the responses of cardiac genes during the hypertrophic process in vivo.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验