Suppr超能文献

蛋白质相互作用、网络药理学和机器学习共同作用,以预测与肥厚型心肌病中线粒体功能障碍相关的基因。

Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic cardiomyopathy.

作者信息

Chen Jia-Lin, Xiao Di, Liu Yi-Jiang, Wang Zhan, Chen Zhi-Huang, Li Rui, Li Li, He Rong-Hai, Jiang Shu-Yan, Chen Xin, Xu Lin-Xi, Lu Feng-Chun, Wang Jia-Mao, Shan Zhong-Gui

机构信息

The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.

Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China.

出版信息

Sci Rep. 2025 Apr 29;15(1):15017. doi: 10.1038/s41598-025-97534-x.

Abstract

This study looked at possible targets for hypertrophic cardiomyopathy (HCM), a condition marked by thickening of the ventricular wall, primarily in the left ventricle. We employed differential gene analysis and weighted gene co-expression network analysis (WGCNA) on samples. We then carried out an enrichment analysis. We also investigated the process of immunological infiltration. We employed six machine learning techniques and two protein-protein interaction (PPI) network gene selection approaches to search for the most characteristic gene (MCG). In the validation ladder, we verified the expression of MCG. Furthermore, we examined the MCG expression levels in HCM animal and cell models. Finally, we performed molecular docking and predicted potential medications for HCM treatment. 7975 differentially expressed genes (DEGs) were found in our study. We also identified 236 genes in the blue module using WGCNA. Screening at the transcriptome and protein levels was used to mine MCG. The final result screened CCAAT/Enhancer Binding Protein Delta (CEBPD) as MCG. We confirmed that MCG expression matched the outcomes of the experimental ladder. The level of CEBPD mRNA and protein was lowered in HCM animal and cellular models. Given that Abt-751 had the highest binding affinity to CEBPD, it might be a projected targeted medication. We found a new target gene for HCM called CEBPD, which is probably going to function by mitochondrial dysfunction. An innovative aim for the management or avoidance of HCM is offered by this analysis. Abt-751 may be a predicted targeted drug for HCM that had the greatest binding affinity with CEBPD.

摘要

本研究着眼于肥厚型心肌病(HCM)的潜在靶点,这是一种以心室壁增厚为特征的疾病,主要累及左心室。我们对样本进行了差异基因分析和加权基因共表达网络分析(WGCNA)。然后进行了富集分析。我们还研究了免疫浸润过程。我们采用了六种机器学习技术和两种蛋白质-蛋白质相互作用(PPI)网络基因选择方法来寻找最具特征性的基因(MCG)。在验证环节,我们验证了MCG的表达。此外,我们检测了HCM动物和细胞模型中MCG的表达水平。最后,我们进行了分子对接并预测了用于治疗HCM的潜在药物。我们的研究发现了7975个差异表达基因(DEG)。我们还通过WGCNA在蓝色模块中鉴定出236个基因。利用转录组和蛋白质水平的筛选来挖掘MCG。最终结果筛选出CCAAT/增强子结合蛋白δ(CEBPD)作为MCG。我们证实MCG的表达与实验环节的结果相符。在HCM动物和细胞模型中,CEBPD的mRNA和蛋白质水平降低。鉴于Abt-751与CEBPD具有最高的结合亲和力,它可能是一种预测的靶向药物。我们发现了一个名为CEBPD的HCM新靶基因,其可能通过线粒体功能障碍发挥作用。该分析为HCM的管理或预防提供了一个创新目标。Abt-751可能是一种预测的HCM靶向药物,它与CEBPD具有最大的结合亲和力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3b/12041389/91ee010c4c06/41598_2025_97534_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验