Suppr超能文献

顶端外胚层嵴是产生远端肢体祖细胞的计时器。

The apical ectodermal ridge is a timer for generating distal limb progenitors.

作者信息

Lu Pengfei, Yu Ying, Perdue Yasmine, Werb Zena

机构信息

Department of Anatomy and Program in Developmental Biology, University of California at San Francisco, San Francisco, CA 94143-0452, USA.

出版信息

Development. 2008 Apr;135(8):1395-405. doi: 10.1242/dev.018945.

Abstract

The apical ectodermal ridge (AER) is a transient embryonic structure essential for the induction, patterning and outgrowth of the vertebrate limb. However, the mechanism of AER function in limb skeletal patterning has remained unclear. In this study, we genetically ablated the AER by conditionally removing FGFR2 function and found that distal limb development failed in mutant mice. We showed that FGFR2 promotes survival of AER cells and interacts with Wnt/beta-catenin signaling during AER maintenance. Interestingly, cell proliferation and survival were not significantly reduced in the distal mesenchyme of mutant limb buds. We established Hoxa13 expression as an early marker of distal limb progenitors and discovered a dynamic morphogenetic process of distal limb development. We found that premature AER loss in mutant limb buds delayed generation of autopod progenitors, which in turn failed to reach a threshold number required to form a normal autopod. Taken together, we have uncovered a novel mechanism, whereby the AER regulates the number of autopod progenitors by determining the onset of their generation.

摘要

顶端外胚层嵴(AER)是一种短暂的胚胎结构,对脊椎动物肢体的诱导、模式形成和生长至关重要。然而,AER在肢体骨骼模式形成中的功能机制仍不清楚。在本研究中,我们通过条件性去除FGFR2功能对AER进行基因消融,发现突变小鼠的远端肢体发育失败。我们表明,FGFR2促进AER细胞的存活,并在AER维持过程中与Wnt/β-连环蛋白信号相互作用。有趣的是,突变肢体芽远端间充质中的细胞增殖和存活并未显著降低。我们将Hoxa13表达确立为远端肢体祖细胞的早期标志物,并发现了远端肢体发育的动态形态发生过程。我们发现,突变肢体芽中AER的过早缺失延迟了 autopod 祖细胞的产生,而这些祖细胞又未能达到形成正常 autopod 所需的阈值数量。综上所述,我们揭示了一种新机制,即AER通过确定autopod祖细胞产生的起始来调节其数量。

相似文献

1
The apical ectodermal ridge is a timer for generating distal limb progenitors.
Development. 2008 Apr;135(8):1395-405. doi: 10.1242/dev.018945.
2
Apical ectodermal ridge regulates three principal axes of the developing limb.
J Zhejiang Univ Sci B. 2020;21(10):757-766. doi: 10.1631/jzus.B2000285.
3
Role of Epiprofin, a zinc-finger transcription factor, in limb development.
Dev Biol. 2010 Jan 15;337(2):363-74. doi: 10.1016/j.ydbio.2009.11.007. Epub 2009 Nov 10.
4
Multiple roles of mesenchymal beta-catenin during murine limb patterning.
Development. 2006 Apr;133(7):1219-29. doi: 10.1242/dev.02298. Epub 2006 Feb 22.
6
Smad1/Smad5 signaling in limb ectoderm functions redundantly and is required for interdigital programmed cell death.
Dev Biol. 2012 Mar 1;363(1):247-57. doi: 10.1016/j.ydbio.2011.12.037. Epub 2012 Jan 3.
7
BMPs negatively regulate structure and function of the limb apical ectodermal ridge.
Development. 1999 Feb;126(5):883-94. doi: 10.1242/dev.126.5.883.
8
Function of BMPs in the apical ectoderm of the developing mouse limb.
Dev Biol. 2004 May 1;269(1):109-22. doi: 10.1016/j.ydbio.2004.01.016.
9
Shh pathway activation is present and required within the vertebrate limb bud apical ectodermal ridge for normal autopod patterning.
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5489-94. doi: 10.1073/pnas.0912818107. Epub 2010 Mar 8.
10
The Apical Ectodermal Ridge: morphological aspects and signaling pathways.
Int J Dev Biol. 2008;52(7):857-71. doi: 10.1387/ijdb.072416mf.

引用本文的文献

1
Fibroblast growth factor 8: Multifaceted role in development and developmental disorder.
Genes Dis. 2025 Jan 10;12(5):101524. doi: 10.1016/j.gendis.2025.101524. eCollection 2025 Sep.
3
Targeting Tumor Heterogeneity by Breaking a Stem Cell and Epithelial Niche Interaction Loop.
Adv Sci (Weinh). 2024 Jul;11(26):e2307452. doi: 10.1002/advs.202307452. Epub 2024 May 6.
4
Fgf signalling triggers an intrinsic mesodermal timer that determines the duration of limb patterning.
Nat Commun. 2023 Sep 20;14(1):5841. doi: 10.1038/s41467-023-41457-6.
5
TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb.
Sci Adv. 2022 Dec 14;8(50):eadd0695. doi: 10.1126/sciadv.add0695.
6
Biological Significance and Targeting of the FGFR Axis in Cancer.
Cancers (Basel). 2021 Nov 13;13(22):5681. doi: 10.3390/cancers13225681.
7
The Story of the Hand.
Indian J Plast Surg. 2021 Apr;54(2):106-113. doi: 10.1055/s-0041-1729771. Epub 2021 Jul 5.

本文引用的文献

1
2
FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis.
Development. 2008 Feb;135(3):483-91. doi: 10.1242/dev.013268. Epub 2007 Dec 19.
3
Rethinking the proximodistal axis of the vertebrate limb in the molecular era.
Genes Dev. 2007 Jun 15;21(12):1433-42. doi: 10.1101/gad.1547407.
4
Specification of cell fate along the proximal-distal axis in the developing chick limb bud.
Development. 2007 Apr;134(7):1397-406. doi: 10.1242/dev.02822. Epub 2007 Feb 28.
5
Control of Hoxd genes' collinearity during early limb development.
Dev Cell. 2006 Jan;10(1):93-103. doi: 10.1016/j.devcel.2005.11.014.
8
Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning.
Development. 2005 Oct;132(19):4235-45. doi: 10.1242/dev.02001. Epub 2005 Aug 24.
9
Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference.
Nucleic Acids Res. 2005 Jun 24;33(11):e102. doi: 10.1093/nar/gni100.
10
Evolution of the Fgf and Fgfr gene families.
Trends Genet. 2004 Nov;20(11):563-9. doi: 10.1016/j.tig.2004.08.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验