Suppr超能文献

形成节肢动物身体结构的不同策略:从果蝇和蜘蛛中的Dpp、Sog和Delta获得的启示

Differing strategies for forming the arthropod body plan: lessons from Dpp, Sog and Delta in the fly Drosophila and spider Achaearanea.

作者信息

Oda Hiroki, Akiyama-Oda Yasuko

机构信息

JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.

出版信息

Dev Growth Differ. 2008 May;50(4):203-14. doi: 10.1111/j.1440-169X.2008.00998.x.

Abstract

In the insect Drosophila embryo, establishment of maternal transcription factor gradients, rather than cell-cell interactions, is fundamental to patterning the embryonic axes. In contrast, in the chelicerate spider embryo, cell-cell interactions are thought to play a crucial role in the development of the embryonic axes. A grafting experiment by Holm using spider eggs resulted in duplication of the embryonic axes, similar to the Spemann's organizer experiment using amphibian eggs. Recent work using the house spider Achaearanea tepidariorum has demonstrated that the homologs of decapentaplegic (dpp), short gastrulation (sog) and Delta, which encode a bone morphogenetic protein (BMP)-type ligand, its antagonist and a Notch ligand, respectively, are required in distinct aspects of axis formation. Achaearanea Dpp appears to function as a symmetry-breaking signal, which could account for Holm's results to some extent. Experimental findings concerning Achaearanea sog and Delta have highlighted differences in the mechanisms underlying ventral and posterior development between Drosophila and Achaearanea. Achaearanea ventral patterning essentially depends on sog function, in contrast to the Drosophila patterning mechanism, which is based on the nuclear gradient of Dorsal. Achaearanea posterior (or opisthosomal) patterning relies on the function of the caudal lobe, which develops from cells surrounding the blastopore through progressive activation of Delta-Notch signaling. In this review, we describe the differing strategies for forming the arthropod body plan in the fly and spider, and provide a perspective towards understanding the relationship between the arthropod and vertebrate body plans.

摘要

在昆虫果蝇胚胎中,母源转录因子梯度的建立,而非细胞间相互作用,对于胚胎轴的模式形成至关重要。相比之下,在螯肢动物蜘蛛胚胎中,细胞间相互作用被认为在胚胎轴的发育中起着关键作用。霍尔姆利用蜘蛛卵进行的移植实验导致胚胎轴重复,类似于用两栖类卵进行的施佩曼组织者实验。最近使用家蛛温驯络新妇进行的研究表明,分别编码骨形态发生蛋白(BMP)型配体、其拮抗剂和Notch配体的脱翅蛋白(dpp)、短原肠胚形成蛋白(sog)和Delta的同源物,在轴形成的不同方面是必需的。温驯络新妇的Dpp似乎作为一种打破对称性的信号发挥作用,这在一定程度上可以解释霍尔姆的实验结果。关于温驯络新妇sog和Delta的实验发现突出了果蝇和温驯络新妇在腹侧和后侧发育潜在机制上的差异。与基于背腹核梯度的果蝇模式形成机制不同,温驯络新妇的腹侧模式形成基本上依赖于sog的功能。温驯络新妇的后侧(或腹部)模式形成依赖于尾叶的功能,尾叶是由围绕胚孔的细胞通过Delta-Notch信号的逐步激活而发育形成的。在这篇综述中,我们描述了果蝇和蜘蛛形成节肢动物身体模式的不同策略,并提供了一个视角来理解节肢动物和脊椎动物身体模式之间的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验