Cheng Kung-Shan, Stakhursky Vadim, Craciunescu Oana I, Stauffer Paul, Dewhirst Mark, Das Shiva K
Division of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
Phys Med Biol. 2008 Mar 21;53(6):1619-35. doi: 10.1088/0031-9155/53/6/008. Epub 2008 Feb 25.
The goal of this work is to build the foundation for facilitating real-time magnetic resonance image guided patient treatment for heating systems with a large number of physical sources (e.g. antennas). Achieving this goal requires knowledge of how the temperature distribution will be affected by changing each source individually, which requires time expenditure on the order of the square of the number of sources. To reduce computation time, we propose a model reduction approach that combines a smaller number of predefined source configurations (fewer than the number of actual sources) that are most likely to heat tumor. The source configurations consist of magnitude and phase source excitation values for each actual source and may be computed from a CT scan based plan or a simplified generic model of the corresponding patient anatomy. Each pre-calculated source configuration is considered a 'virtual source'. We assume that the actual best source settings can be represented effectively as weighted combinations of the virtual sources. In the context of optimization, each source configuration is treated equivalently to one physical source. This model reduction approach is tested on a patient upper-leg tumor model (with and without temperature-dependent perfusion), heated using a 140 MHz ten-antenna cylindrical mini-annular phased array. Numerical simulations demonstrate that using only a few pre-defined source configurations can achieve temperature distributions that are comparable to those from full optimizations using all physical sources. The method yields close to optimal temperature distributions when using source configurations determined from a simplified model of the tumor, even when tumor position is erroneously assumed to be approximately 2.0 cm away from the actual position as often happens in practical clinical application of pre-treatment planning. The method also appears to be robust under conditions of changing, nonlinear, temperature-dependent perfusion. The proposed approach of using virtual sources reduces the number of variables that must be optimized to achieve a tumor-focused temperature distribution, thereby reducing the calculation time required in real-time control applications to about 1/3 to 1/4 of that required for full optimization.
这项工作的目标是为大量物理源(如天线)的加热系统实现实时磁共振图像引导的患者治疗奠定基础。要实现这一目标,需要了解逐个改变每个源时温度分布将如何受到影响,而这需要花费与源数量的平方成正比的时间。为了减少计算时间,我们提出了一种模型简化方法,该方法结合了数量较少的预定义源配置(少于实际源的数量),这些配置最有可能加热肿瘤。源配置由每个实际源的幅度和相位源激励值组成,可以根据基于CT扫描的计划或相应患者解剖结构的简化通用模型来计算。每个预先计算的源配置都被视为一个“虚拟源”。我们假设实际的最佳源设置可以有效地表示为虚拟源的加权组合。在优化的背景下,每个源配置都被等效地视为一个物理源。这种模型简化方法在一个患者大腿肿瘤模型(有和没有温度依赖灌注)上进行了测试,该模型使用140 MHz的十天线圆柱形微环形相控阵进行加热。数值模拟表明,仅使用少数预定义的源配置就能实现与使用所有物理源进行完全优化时相当的温度分布。当使用从肿瘤简化模型确定的源配置时,即使在预处理计划的实际临床应用中经常出现的肿瘤位置被错误地假定为比实际位置大约远2.0 cm的情况下,该方法也能产生接近最优的温度分布。该方法在变化的、非线性的、温度依赖灌注的条件下似乎也很稳健。所提出的使用虚拟源的方法减少了为实现肿瘤聚焦温度分布而必须优化的变量数量,从而将实时控制应用所需的计算时间减少到完全优化所需时间的约1/3至1/4。