Baxter Douglas A, Byrne John H
Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, TX, USA.
Methods Mol Biol. 2007;401:127-54. doi: 10.1007/978-1-59745-520-6_8.
A key challenge for neuroinformatics is to devise methods for representing, accessing, and integrating vast amounts of diverse and complex data. A useful approach to represent and integrate complex data sets is to develop mathematical models [Arbib (The Handbook of Brain Theory and Neural Networks, pp. 741-745, 2003); Arbib and Grethe (Computing the Brain: A Guide to Neuroinformatics, 2001); Ascoli (Computational Neuroanatomy: Principles and Methods, 2002); Bower and Bolouri (Computational Modeling of Genetic and Biochemical Networks, 2001); Hines et al. (J. Comput. Neurosci. 17, 7-11, 2004); Shepherd et al. (Trends Neurosci. 21, 460-468, 1998); Sivakumaran et al. (Bioinformatics 19, 408-415, 2003); Smolen et al. (Neuron 26, 567-580, 2000); Vadigepalli et al. (OMICS 7, 235-252, 2003)]. Models of neural systems provide quantitative and modifiable frameworks for representing data and analyzing neural function. These models can be developed and solved using neurosimulators. One such neurosimulator is simulator for neural networks and action potentials (SNNAP) [Ziv (J. Neurophysiol. 71, 294-308, 1994)]. SNNAP is a versatile and user-friendly tool for developing and simulating models of neurons and neural networks. SNNAP simulates many features of neuronal function, including ionic currents and their modulation by intracellular ions and/or second messengers, and synaptic transmission and synaptic plasticity. SNNAP is written in Java and runs on most computers. Moreover, SNNAP provides a graphical user interface (GUI) and does not require programming skills. This chapter describes several capabilities of SNNAP and illustrates methods for simulating neurons and neural networks. SNNAP is available at http://snnap.uth.tmc.edu .
神经信息学面临的一个关键挑战是设计出用于表示、访问和整合大量多样且复杂数据的方法。一种表示和整合复杂数据集的有用方法是开发数学模型[阿比比(《脑理论与神经网络手册》,第741 - 745页,2003年);阿比比和格雷特(《计算大脑:神经信息学指南》,2001年);阿斯科利(《计算神经解剖学:原理与方法》,2002年);鲍尔和博卢里(《遗传与生化网络的计算建模》,2001年);海因斯等人(《计算神经科学杂志》17卷,第7 - 11页,2004年);谢泼德等人(《神经科学趋势》21卷,第460 - 468页,1998年);西瓦库马兰等人(《生物信息学》19卷,第408 - 415页,2003年);斯莫伦等人(《神经元》26卷,第567 - 580页,2000年);瓦迪盖帕利等人(《组学》7卷,第235 - 252页,2003年)]。神经系统模型为表示数据和分析神经功能提供了定量且可修改的框架。这些模型可以使用神经模拟器来开发和求解。其中一种神经模拟器是神经网络与动作电位模拟器(SNNAP)[齐夫(《神经生理学杂志》71卷,第294 - 308页,1994年)]。SNNAP是一个用于开发和模拟神经元及神经网络模型的通用且用户友好的工具。SNNAP模拟神经元功能的许多特征,包括离子电流及其受细胞内离子和/或第二信使的调节,以及突触传递和突触可塑性。SNNAP用Java编写,可在大多数计算机上运行。此外,SNNAP提供图形用户界面(GUI),且不需要编程技能。本章描述了SNNAP的几种功能,并举例说明了模拟神经元和神经网络的方法。可在http://snnap.uth.tmc.edu获取SNNAP。