Suppr超能文献

一种可配置的模拟环境,用于在图形处理器上高效模拟大规模脉冲神经网络。

A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.

作者信息

Nageswaran Jayram Moorkanikara, Dutt Nikil, Krichmar Jeffrey L, Nicolau Alex, Veidenbaum Alexander V

机构信息

Department of Computer Science, University of California Irvine, Irvine, CA 92697-3435, United States.

出版信息

Neural Netw. 2009 Jul-Aug;22(5-6):791-800. doi: 10.1016/j.neunet.2009.06.028. Epub 2009 Jul 2.

Abstract

Neural network simulators that take into account the spiking behavior of neurons are useful for studying brain mechanisms and for various neural engineering applications. Spiking Neural Network (SNN) simulators have been traditionally simulated on large-scale clusters, super-computers, or on dedicated hardware architectures. Alternatively, Compute Unified Device Architecture (CUDA) Graphics Processing Units (GPUs) can provide a low-cost, programmable, and high-performance computing platform for simulation of SNNs. In this paper we demonstrate an efficient, biologically realistic, large-scale SNN simulator that runs on a single GPU. The SNN model includes Izhikevich spiking neurons, detailed models of synaptic plasticity and variable axonal delay. We allow user-defined configuration of the GPU-SNN model by means of a high-level programming interface written in C++ but similar to the PyNN programming interface specification. PyNN is a common programming interface developed by the neuronal simulation community to allow a single script to run on various simulators. The GPU implementation (on NVIDIA GTX-280 with 1 GB of memory) is up to 26 times faster than a CPU version for the simulation of 100K neurons with 50 Million synaptic connections, firing at an average rate of 7 Hz. For simulation of 10 Million synaptic connections and 100K neurons, the GPU SNN model is only 1.5 times slower than real-time. Further, we present a collection of new techniques related to parallelism extraction, mapping of irregular communication, and network representation for effective simulation of SNNs on GPUs. The fidelity of the simulation results was validated on CPU simulations using firing rate, synaptic weight distribution, and inter-spike interval analysis. Our simulator is publicly available to the modeling community so that researchers will have easy access to large-scale SNN simulations.

摘要

考虑神经元脉冲行为的神经网络模拟器对于研究大脑机制和各种神经工程应用很有用。传统上,脉冲神经网络(SNN)模拟器是在大规模集群、超级计算机或专用硬件架构上进行模拟的。另外,计算统一设备架构(CUDA)图形处理单元(GPU)可以为SNN模拟提供低成本、可编程且高性能的计算平台。在本文中,我们展示了一种在单个GPU上运行的高效、生物逼真的大规模SNN模拟器。该SNN模型包括Izhikevich脉冲神经元、突触可塑性的详细模型和可变轴突延迟。我们通过用C++编写但类似于PyNN编程接口规范的高级编程接口,允许用户自定义GPU - SNN模型的配置。PyNN是神经元模拟社区开发的一个通用编程接口,允许单个脚本在各种模拟器上运行。对于模拟具有5000万个突触连接、平均发放率为7Hz的10万个神经元,GPU实现(在具有1GB内存的NVIDIA GTX - 280上)比CPU版本快26倍。对于模拟1000万个突触连接和10万个神经元,GPU SNN模型仅比实时速度慢1.5倍。此外,我们提出了一系列与并行性提取、不规则通信映射和网络表示相关的新技术,用于在GPU上有效模拟SNN。使用发放率、突触权重分布和峰峰间期分析在CPU模拟上验证了模拟结果的保真度。我们的模拟器向建模社区公开提供,以便研究人员能够轻松进行大规模SNN模拟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验