Suppr超能文献

通过人鼠保守共表达分析预测人类疾病基因。

Prediction of human disease genes by human-mouse conserved coexpression analysis.

作者信息

Ala Ugo, Piro Rosario Michael, Grassi Elena, Damasco Christian, Silengo Lorenzo, Oti Martin, Provero Paolo, Di Cunto Ferdinando

机构信息

Molecular Biotechnology Center, Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy.

出版信息

PLoS Comput Biol. 2008 Mar 28;4(3):e1000043. doi: 10.1371/journal.pcbi.1000043.

Abstract

BACKGROUND

Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates.

METHODOLOGY/PRINCIPAL FINDINGS: We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases.

CONCLUSION

Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes.

摘要

背景

即使在后基因组时代,在与人类遗传疾病相关的基因座内鉴定候选基因仍是一项极具挑战性的任务,因为关键区域通常可能包含数百个定位候选基因。由于涉及相似表型的基因往往具有非常相似的表达谱,高通量基因表达数据可能是鉴定最佳测序候选基因的非常重要的资源。然而,到目前为止,基因共表达尚未非常成功地用于对定位候选基因进行优先级排序。

方法/主要发现:我们表明,仅通过关注在人类和小鼠中具有相似表达谱的基因,就有可能从大量微阵列数据集中可靠地识别基因之间与疾病相关的关系。此外,我们系统地表明,人类 - 小鼠保守共表达与表型相似性图谱的整合能够在大型基因组区域中高效鉴定疾病基因。最后,对850个分子基础未知的OMIM基因座采用这种方法,我们为81种遗传疾病提出了高概率候选基因。

结论

我们的结果表明,即使在人类与小鼠的系统发育距离上,保守共表达也是预测人类基因之间与疾病相关关系的非常有力的标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb27/2268251/ae195cf9da66/pcbi.1000043.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验