Suppr超能文献

大鼠中相位性脑桥波发生器的激活:背侧海马体和杏仁核中可塑性相关基因和蛋白质表达的一种机制。

Activation of phasic pontine-wave generator in the rat: a mechanism for expression of plasticity-related genes and proteins in the dorsal hippocampus and amygdala.

作者信息

Datta Subimal, Li Guangmu, Auerbach Sanford

机构信息

Sleep and Cognitive Neuroscience Laboratory, Department of Psychiatry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.

出版信息

Eur J Neurosci. 2008 Apr;27(7):1876-92. doi: 10.1111/j.1460-9568.2008.06166.x. Epub 2008 Mar 26.

Abstract

A number of behavioral studies have emphasized the importance of interactions between the pontine-wave (P-wave) generator and the dorsal hippocampus (DH) in two-way active avoidance (TWAA) memory processing; however, the direct involvement of the P-wave generator in the TWAA training trial-induced molecular events in the DH and amygdala has not been systematically evaluated. Here we demonstrate that the TWAA learning training trials activate P-wave generator, and increase phosphorylation of CREB (pCREB) and expression of activity-regulated cytoskeletal-associated (Arc) protein, as well as messenger ribonucleic acid (mRNAs) of Arc, brain-derived nerve growth factor (BDNF) and early growth response-1 (Egr-1) in the DH and amygdala. Selective elimination of P-wave-generating cells abolished P-wave activity and suppressed TWAA learning training trial-induced expression of pCREB and Arc proteins and Arc, BDNF and Egr-1 mRNAs in the DH and amygdala. Following a session of TWAA training, all rats were equal in terms of time spent in wakefulness, slow-wave sleep and rapid eye movement (REM) sleep irrespective of P-wave lesions. The second set of experiments demonstrated that localized cholinergic stimulation of the P-wave generator increased expression of Arc, BDNF and Egr-1 mRNAs in the DH. Together, these findings provide the first direct evidence that activation of P-wave-generating cells is critically involved in the TWAA training trial-induced expression of plasticity-related genes in the DH and amygdala. These findings are discussed in relation to the role of P-wave generator activation for the REM sleep-dependent development and cognitive functions of the brain.

摘要

多项行为学研究强调了脑桥波(P波)发生器与背侧海马体(DH)之间的相互作用在双向主动回避(TWAA)记忆处理中的重要性;然而,P波发生器在TWAA训练试验诱导的DH和杏仁核分子事件中的直接参与尚未得到系统评估。在这里,我们证明TWAA学习训练试验激活了P波发生器,并增加了CREB的磷酸化(pCREB)以及活性调节细胞骨架相关蛋白(Arc)的表达,以及DH和杏仁核中Arc、脑源性神经营养因子(BDNF)和早期生长反应-1(Egr-1)的信使核糖核酸(mRNA)。选择性消除产生P波的细胞消除了P波活动,并抑制了TWAA学习训练试验诱导的DH和杏仁核中pCREB和Arc蛋白以及Arc、BDNF和Egr-1 mRNA的表达。经过一轮TWAA训练后,无论P波损伤如何,所有大鼠在清醒、慢波睡眠和快速眼动(REM)睡眠中所花费的时间都是相等的。第二组实验表明,对P波发生器进行局部胆碱能刺激可增加DH中Arc、BDNF和Egr-1 mRNA的表达。总之,这些发现提供了首个直接证据,即产生P波的细胞的激活关键参与了TWAA训练试验诱导的DH和杏仁核中可塑性相关基因的表达。这些发现将结合P波发生器激活对大脑REM睡眠依赖性发育和认知功能的作用进行讨论。

相似文献

7
Avoidance task training potentiates phasic pontine-wave density in the rat: A mechanism for sleep-dependent plasticity.
J Neurosci. 2000 Nov 15;20(22):8607-13. doi: 10.1523/JNEUROSCI.20-22-08607.2000.
10
Intracranial self-stimulation induces expression of learning and memory-related genes in rat amygdala.
Genes Brain Behav. 2011 Feb;10(1):69-77. doi: 10.1111/j.1601-183X.2010.00609.x. Epub 2010 Oct 29.

引用本文的文献

1
REM Sleep Preserves Affective Response to Social Stress-Experimental Study.
eNeuro. 2024 Jun 4;11(6). doi: 10.1523/ENEURO.0453-23.2024. Print 2024 Jun.
2
Novel Electrophysiological Signatures of Learning and Forgetting in Human Rapid Eye Movement Sleep.
J Neurosci. 2024 Jun 12;44(24):e1517232024. doi: 10.1523/JNEUROSCI.1517-23.2024.
3
The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview.
Brain Sci. 2023 Sep 20;13(9):1350. doi: 10.3390/brainsci13091350.
5
Global dissociation of the posterior amygdala from the rest of the brain during REM sleep.
Commun Biol. 2022 Nov 28;5(1):1306. doi: 10.1038/s42003-022-04257-0.
6
Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus.
Brain Res Bull. 2022 Sep;187:181-198. doi: 10.1016/j.brainresbull.2022.07.002. Epub 2022 Jul 15.
7
Translational approaches to influence sleep and arousal.
Brain Res Bull. 2022 Jul;185:140-161. doi: 10.1016/j.brainresbull.2022.05.002. Epub 2022 May 10.
9
How Sleep Shapes Thalamocortical Circuit Function in the Visual System.
Annu Rev Vis Sci. 2019 Sep 15;5:295-315. doi: 10.1146/annurev-vision-091718-014715. Epub 2019 Jul 5.
10
How rhythms of the sleeping brain tune memory and synaptic plasticity.
Sleep. 2019 Jul 8;42(7). doi: 10.1093/sleep/zsz095.

本文引用的文献

1
Sleep: off-line memory reprocessing.
Trends Cogn Sci. 1998 Dec 1;2(12):484-92. doi: 10.1016/s1364-6613(98)01258-3.
2
Ontogenetic development of the human sleep-dream cycle.
Science. 1966 Apr 29;152(3722):604-19. doi: 10.1126/science.152.3722.604.
3
Sleep-dependent memory consolidation and reconsolidation.
Sleep Med. 2007 Jun;8(4):331-43. doi: 10.1016/j.sleep.2007.03.011. Epub 2007 Apr 30.
8
Neurotrophic factors in the central nucleus of amygdala may be organized to provide substrates for associative learning.
Brain Res. 2006 Mar 3;1076(1):78-86. doi: 10.1016/j.brainres.2006.01.009. Epub 2006 Feb 13.
10
A role for sleep in brain plasticity.
Pediatr Rehabil. 2006 Apr-Jun;9(2):98-118. doi: 10.1080/13638490500138702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验