具有不完全协变量数据的变量选择

Variable selection with incomplete covariate data.

作者信息

Claeskens Gerda, Consentino Fabrizio

机构信息

KU Leuven, ORSTAT and Leuven Statistics Research Center, Leuven, Belgium.

出版信息

Biometrics. 2008 Dec;64(4):1062-9. doi: 10.1111/j.1541-0420.2008.01003.x. Epub 2008 Mar 27.

Abstract

Application of classical model selection methods such as Akaike's information criterion (AIC) becomes problematic when observations are missing. In this article we propose some variations on the AIC, which are applicable to missing covariate problems. The method is directly based on the expectation maximization (EM) algorithm and is readily available for EM-based estimation methods, without much additional computational efforts. The missing data AIC criteria are formally derived and shown to work in a simulation study and by application to data on diabetic retinopathy.

摘要

当存在缺失观测值时,应用诸如赤池信息准则(AIC)等经典模型选择方法会出现问题。在本文中,我们提出了AIC的一些变体,它们适用于协变量缺失问题。该方法直接基于期望最大化(EM)算法,并且对于基于EM的估计方法很容易获得,无需太多额外的计算工作。缺失数据AIC准则经过正式推导,并在模拟研究以及应用于糖尿病视网膜病变数据时得到验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索