Suppr超能文献

在具有多重插补数据的多元线性回归框架中使用AIC

Using AIC in Multiple Linear Regression framework with Multiply Imputed Data.

作者信息

Chaurasia Ashok, Harel Ofer

机构信息

Department of Statistics, University of Connecticut, Storrs, CT, USA.

出版信息

Health Serv Outcomes Res Methodol. 2012 Jun;12(2-3):219-233. doi: 10.1007/s10742-012-0088-8.

Abstract

Many model selection criteria proposed over the years have become common procedures in applied research. However, these procedures were designed for complete data. Complete data is rare in applied statistics, in particular in medical, public health and health policy settings. Incomplete data, another common problem in applied statistics, introduces its own set of complications in light of which the task of model selection can get quite complicated. Recently, few have suggested model selection procedures for incomplete data with varying degrees of success. In this paper we explore model selection by the Akaike Information Criterion (AIC) in the multivariate regression setting with ignorable missing data accounted for via multiple imputation.

摘要

多年来提出的许多模型选择标准已成为应用研究中的常见程序。然而,这些程序是为完整数据设计的。完整数据在应用统计学中很少见,尤其是在医学、公共卫生和卫生政策环境中。不完整数据是应用统计学中的另一个常见问题,它带来了一系列自身的复杂情况,鉴于此,模型选择任务可能会变得相当复杂。最近,很少有人针对不完整数据提出模型选择程序,且取得了不同程度的成功。在本文中,我们探讨在多元回归设置下,通过对可忽略的缺失数据进行多重填补来使用赤池信息准则(AIC)进行模型选择。

相似文献

3
Determining the number of components in PLS regression on incomplete data set.确定不完全数据集上偏最小二乘回归中的成分数量。
Stat Appl Genet Mol Biol. 2019 Nov 6;18(6):/j/sagmb.2019.18.issue-6/sagmb-2018-0059/sagmb-2018-0059.xml. doi: 10.1515/sagmb-2018-0059.
6
Covariate Selection for Multilevel Models with Missing Data.具有缺失数据的多层模型的协变量选择
Stat (Int Stat Inst). 2017;6(1):31-46. doi: 10.1002/sta4.133. Epub 2017 Jan 8.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验