Nissim Itzhak, Horyn Oksana, Nissim Ilana, Daikhin Yevgeny, Wehrli Suzanne L, Yudkoff Marc
Children's Hospital of Philadelphia, Division of Child Development, Department of Pediatrics, University of Pennsylvania School of Medicine, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA.
J Biol Chem. 2008 May 30;283(22):15063-71. doi: 10.1074/jbc.M800163200. Epub 2008 Mar 28.
We previously showed that agmatine stimulated hepatic ureagenesis. In this study, we sought to determine whether the action of agmatine is mediated via cAMP signaling. A pilot experiment demonstrated that the phosphodiesterase inhibitor, 3-isobutylmethylxanthine (IBMX), inhibited urea synthesis albeit increased [cAMP]. Thus, we hypothesized that IBMX inhibits hepatic urea synthesis independent of [cAMP]. We further theorized that agmatine would negate the IBMX action and improve ureagenesis. Experiments were carried out with isolated mitochondria and (15)NH(4)Cl to trace [(15)N]citrulline production or [5-(15)N]glutamine and a rat liver perfusion system to trace ureagenesis. The results demonstrate that IBMX induced the following: (i) inhibition of the mitochondrial respiratory chain and diminished O(2) consumption during liver perfusion; (ii) depletion of the phosphorylation potential and overall hepatic energetic capacity; (iii) inhibition of [(15)N]citrulline synthesis; and (iv) inhibition of urea output in liver perfusion with little effect on [N-acetylglutamate]. The results indicate that IBMX directly and specifically inhibited complex I of the respiratory chain and carbamoyl-phosphate synthase-I (CPS-I), with an EC(50) about 0.6 mm despite a significant elevation of hepatic [cAMP]. Perfusion of agmatine with IBMX stimulated O(2) consumption, restored hepatic phosphorylation potential, and significantly stimulated ureagenesis. The action of agmatine may signify a cascade effect initiated by increased oxidative phosphorylation and greater ATP synthesis. In addition, agmatine may prevent IBMX from binding to one or more active site(s) of CPS-I and thus protect against inhibition of CPS-I. Together, the data may suggest a new experimental application of IBMX in studies of CPS-I malfunction and the use of agmatine as intervention therapy.
我们之前的研究表明,胍丁胺可刺激肝脏尿素生成。在本研究中,我们试图确定胍丁胺的作用是否通过环磷酸腺苷(cAMP)信号传导介导。一项预实验表明,磷酸二酯酶抑制剂3-异丁基-1-甲基黄嘌呤(IBMX)虽能增加[cAMP]水平,但却抑制了尿素合成。因此,我们推测IBMX抑制肝脏尿素合成与[cAMP]无关。我们进一步推测,胍丁胺可消除IBMX的作用并改善尿素生成。实验采用分离的线粒体和(15)NH4Cl追踪[(15)N]瓜氨酸的生成,或使用[5-(15)N]谷氨酰胺以及大鼠肝脏灌注系统追踪尿素生成。结果表明,IBMX可导致以下情况:(i)抑制线粒体呼吸链并减少肝脏灌注期间的氧气消耗;(ii)磷酸化电位降低以及肝脏整体能量代谢能力下降;(iii)抑制[(15)N]瓜氨酸合成;(iv)抑制肝脏灌注中的尿素输出,而对N-乙酰谷氨酸影响不大。结果表明,尽管肝脏[cAMP]显著升高,但IBMX直接且特异性地抑制了呼吸链复合体I和氨甲酰磷酸合成酶I(CPS-I),其半数有效浓度(EC50)约为0.6 mM。胍丁胺与IBMX共同灌注可刺激氧气消耗,恢复肝脏磷酸化电位,并显著刺激尿素生成。胍丁胺的作用可能意味着由氧化磷酸化增加和更多ATP合成引发的级联效应。此外,胍丁胺可能会阻止IBMX与CPS-I的一个或多个活性位点结合,从而防止CPS-I受到抑制。总之,这些数据可能提示了IBMX在CPS-I功能障碍研究中的新实验应用,以及胍丁胺作为干预治疗手段的用途。