Suppr超能文献

在高 ATP 需求时,心脏起搏细胞中匹配 ATP 供应与需求的机制。

Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand.

机构信息

Laboratory of Cardiovascular Science, Gerontology Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1428-38. doi: 10.1152/ajpheart.00969.2012. Epub 2013 Apr 19.

Abstract

The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to β-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca(2+) (Ca(2+)m) and an indirect effect via enhanced Ca(2+)-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca(2+) and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O₂ consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O₂ consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca(2+)m and cAMP increased concurrently with the increase in AP firing rate. When Ca(2+)m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca(2+)m and an increase in Ca(2+) activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level.

摘要

窦房结细胞(SANCs)的自发性动作电位(AP)发放频率涉及通过 Ca(2+)-钙调蛋白激活的腺苷酸环化酶(AC)、cAMP 介导的蛋白激酶 A(PKA)的高通量信号传递,以及 SR Ca(2+)循环和表面膜离子通道蛋白的 Ca(2+)/钙调蛋白依赖性蛋白激酶 II(CaMKII)依赖性磷酸化。当这种信号传递的通量增加时,例如,响应β-肾上腺素能受体的激活,自发性 AP 发放频率的增加会增加对 ATP 的需求。我们假设,通过增加线粒体 Ca(2+)(Ca(2+)m)的直接作用和通过增强 Ca(2+)-cAMP/PKA-CaMKII 信号传递到线粒体的间接作用,来实现对 ATP 产生的增加以匹配增加的 ATP 需求。为了增加 ATP 需求,用生理盐溶液在 35±0.5°C 下对单个分离的兔窦房结细胞进行灌流,并用异丙肾上腺素、磷酸二酯酶或蛋白磷酸酶抑制剂进行灌流。我们测量了单个窦房结细胞的胞浆和线粒体 Ca(2+)和黄素蛋白荧光,并测量了窦房结细胞悬液中的 cAMP、ATP 和 O₂消耗。尽管自发性 AP 发放频率的增加伴随着 O₂消耗的增加,但 ATP 水平和黄素蛋白荧光保持不变,表明 ATP 产生增加。Ca(2+)m 和 cAMP 都与 AP 发放频率的增加同时增加。当 Ru360 降低 Ca(2+)m 时,异丙肾上腺素引起的自发性 AP 发放频率的增加减少了 25%。因此,Ca(2+)m 的增加和 Ca(2+)激活的 cAMP-PKA-CaMKII 信号传递的增加都调节了基础水平以上的 ATP 供应的增加以满足 ATP 需求。

相似文献

1
Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand.
Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1428-38. doi: 10.1152/ajpheart.00969.2012. Epub 2013 Apr 19.
2
Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand.
J Mol Cell Cardiol. 2011 Nov;51(5):740-8. doi: 10.1016/j.yjmcc.2011.07.018. Epub 2011 Jul 28.
3
Ca²+/calmodulin-dependent protein kinase II (CaMKII) activity and sinoatrial nodal pacemaker cell energetics.
PLoS One. 2013;8(2):e57079. doi: 10.1371/journal.pone.0057079. Epub 2013 Feb 25.
5
Basal Spontaneous Firing of Rabbit Sinoatrial Node Cells Is Regulated by Dual Activation of PDEs (Phosphodiesterases) 3 and 4.
Circ Arrhythm Electrophysiol. 2018 Jun;11(6):e005896. doi: 10.1161/CIRCEP.117.005896.
8
A full range of mouse sinoatrial node AP firing rates requires protein kinase A-dependent calcium signaling.
J Mol Cell Cardiol. 2011 Nov;51(5):730-9. doi: 10.1016/j.yjmcc.2011.07.028. Epub 2011 Aug 4.
9
Computational insight into energy control balance by Ca and cAMP-PKA signaling in pacemaker cells.
J Mol Cell Cardiol. 2023 Dec;185:77-87. doi: 10.1016/j.yjmcc.2023.10.007. Epub 2023 Oct 21.

引用本文的文献

2
Heart Rhythm Harmony Becomes Discordant as We Age.
Heart Lung Circ. 2025 Jun;34(6):543-555. doi: 10.1016/j.hlc.2025.04.084. Epub 2025 May 11.
3
Proteomics Reveals Divergent Cardiac Inflammatory and Metabolic Responses After Inhalation of Ambient Particulate Matter With or Without Ozone.
Cardiovasc Toxicol. 2024 Dec;24(12):1348-1363. doi: 10.1007/s12012-024-09931-9. Epub 2024 Oct 14.
4
Sinus node dysfunction: current understanding and future directions.
Am J Physiol Heart Circ Physiol. 2023 Mar 1;324(3):H259-H278. doi: 10.1152/ajpheart.00618.2022. Epub 2022 Dec 23.
6
Changes in the Concentration of Purine and Pyridine as a Response to Single Whole-Body Cryostimulation.
Front Physiol. 2021 Jan 27;12:634816. doi: 10.3389/fphys.2021.634816. eCollection 2021.
8
Eliminating contraction during culture maintains global and local Ca dynamics in cultured rabbit pacemaker cells.
Cell Calcium. 2019 Mar;78:35-47. doi: 10.1016/j.ceca.2018.12.008. Epub 2018 Dec 18.

本文引用的文献

1
Ca²+/calmodulin-dependent protein kinase II (CaMKII) activity and sinoatrial nodal pacemaker cell energetics.
PLoS One. 2013;8(2):e57079. doi: 10.1371/journal.pone.0057079. Epub 2013 Feb 25.
2
Measuring local gradients of intramitochondrial [Ca(2+)] in cardiac myocytes during sarcoplasmic reticulum Ca(2+) release.
Circ Res. 2013 Feb 1;112(3):424-31. doi: 10.1161/CIRCRESAHA.111.300501. Epub 2012 Dec 14.
3
Distinct patterns of constitutive phosphodiesterase activity in mouse sinoatrial node and atrial myocardium.
PLoS One. 2012;7(10):e47652. doi: 10.1371/journal.pone.0047652. Epub 2012 Oct 15.
4
Cardiac mitochondrial matrix and respiratory complex protein phosphorylation.
Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H940-66. doi: 10.1152/ajpheart.00077.2012. Epub 2012 Aug 10.
5
Crosstalk between mitochondrial and sarcoplasmic reticulum Ca2+ cycling modulates cardiac pacemaker cell automaticity.
PLoS One. 2012;7(5):e37582. doi: 10.1371/journal.pone.0037582. Epub 2012 May 29.
7
Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin.
PLoS One. 2011;6(10):e25539. doi: 10.1371/journal.pone.0025539. Epub 2011 Oct 13.
8
A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology.
J Cardiovasc Pharmacol. 2011 Oct;58(4):339-44. doi: 10.1097/FJC.0b013e31821bc3f0.
9
Spatiotemporal control of heart rate in a rabbit heart.
J Electrocardiol. 2011 Nov-Dec;44(6):626-34. doi: 10.1016/j.jelectrocard.2011.08.010. Epub 2011 Sep 19.
10
Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand.
J Mol Cell Cardiol. 2011 Nov;51(5):740-8. doi: 10.1016/j.yjmcc.2011.07.018. Epub 2011 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验