Denesyuk Natalia A, Weeks John D
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA.
J Chem Phys. 2008 Mar 28;128(12):124109. doi: 10.1063/1.2894478.
We propose a simplified version of local molecular field (LMF) theory to treat Coulomb interactions in simulations of ionic fluids. LMF theory relies on splitting the Coulomb potential into a short-ranged part that combines with other short-ranged core interactions and is simulated explicitly. The averaged effects of the remaining long-ranged part are taken into account through a self-consistently determined effective external field. The theory contains an adjustable length parameter sigma that specifies the cutoff distance for the short-ranged interaction. This can be chosen to minimize the errors resulting from the mean-field treatment of the complementary long-ranged part. Here we suggest that in many cases an accurate approximation to the effective field can be obtained directly from the equilibrium charge density given by the Debye theory of screening, thus eliminating the need for a self-consistent treatment. In the limit sigma-->0, this assumption reduces to the classical Debye approximation. We examine the numerical performance of this approximation for a simple model of a symmetric ionic mixture. Our results for thermodynamic and structural properties of uniform ionic mixtures agree well with similar results of Ewald simulations of the full ionic system. In addition, we have used the simplified theory in a grand-canonical simulation of a nonuniform ionic mixture where an ion has been fixed at the origin. Simulations using short-ranged truncations of the Coulomb interactions alone do not satisfy the exact condition of complete screening of the fixed ion, but this condition is recovered when the effective field is taken into account. We argue that this simplified approach can also be used in the simulations of more complex nonuniform systems.
我们提出了一种局部分子场(LMF)理论的简化版本,用于在离子液体模拟中处理库仑相互作用。LMF理论依赖于将库仑势分解为一个短程部分,该部分与其他短程核心相互作用相结合并进行显式模拟。其余长程部分的平均效应通过自洽确定的有效外场来考虑。该理论包含一个可调长度参数σ,它指定了短程相互作用的截止距离。可以选择这个参数来最小化由互补长程部分的平均场处理所产生的误差。在这里我们表明,在许多情况下,可以直接从德拜屏蔽理论给出的平衡电荷密度中获得有效场的精确近似,从而无需进行自洽处理。在σ→0的极限情况下,这个假设简化为经典的德拜近似。我们研究了这种近似对于对称离子混合物简单模型的数值性能。我们关于均匀离子混合物的热力学和结构性质的结果与完整离子系统的埃瓦尔德模拟的类似结果吻合得很好。此外,我们在一个非均匀离子混合物的巨正则模拟中使用了简化理论,其中一个离子被固定在原点。仅使用库仑相互作用的短程截断进行的模拟不满足对固定离子完全屏蔽的精确条件,但当考虑有效场时,这个条件得以恢复。我们认为这种简化方法也可用于更复杂非均匀系统的模拟。