Suppr超能文献

微生物学助力解决我们的能源需求:石油产甲烷作用及硝酸盐对油田硫循环的影响

Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle.

作者信息

Grigoryan Alexander, Voordouw Gerrit

机构信息

Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.

出版信息

Ann N Y Acad Sci. 2008 Mar;1125:345-52. doi: 10.1196/annals.1419.004.

Abstract

Our society depends greatly on fossil fuels, and the environmental consequences of this are well known and include significant increases of the CO(2) concentration in the earth's atmosphere. Although microbiology has traditionally played only a minor role in fossil-fuel extraction, two novel key discoveries indicate that this may change. First, the realization that oil components can be converted to methane and CO(2) by methanogenic consortia in the absence of electron acceptors (oxygen, nitrate, sulfate) explains how much of the world's oil has been biodegraded in situ. In addition to inorganic nutrients, only water is needed for these methanogenic conversions. Hence, continued methanogenic biodegradation may have shaped the heavy-oil reservoirs that are so prevalent today. The potential to exploit these reactions, for example, by in situ gasification, is currently being actively investigated. Second, injection of nitrate in oil and gas fields can lower sulfide concentrations. High sulfide concentrations, caused by the action of sulfate-reducing bacteria (SRB), are associated with increased risk of corrosion, reservoir plugging (through precipitated sulfides), and human safety. Nitrate injection into an oil field stimulates subsurface heterotrophic nitrate-reducing bacteria (hNRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Nitrite, formed by these NRB by partial reduction of nitrate, is a strong and specific SRB inhibitor. Nitrate injection has, therefore, promise in positively controlling the oil-field sulfur cycle. There is now more interest in and potential to apply petroleum microbiology than there has been in the past, allowing microbiologists to contribute to a sustainable energy future.

摘要

我们的社会极大地依赖化石燃料,其环境后果是众所周知的,包括地球大气中二氧化碳浓度的显著增加。尽管微生物学在传统上在化石燃料开采中只发挥了次要作用,但两项新的关键发现表明这种情况可能会改变。首先,人们认识到在没有电子受体(氧气、硝酸盐、硫酸盐)的情况下,产甲烷菌群可以将石油成分转化为甲烷和二氧化碳,这解释了世界上有多少石油已在原地被生物降解。除了无机养分外,这些产甲烷转化过程只需要水。因此,持续的产甲烷生物降解可能塑造了如今如此普遍的重油储层。目前正在积极研究利用这些反应的潜力,例如通过原位气化。其次,在油气田注入硝酸盐可以降低硫化物浓度。由硫酸盐还原菌(SRB)的作用导致的高硫化物浓度与腐蚀风险增加、储层堵塞(通过沉淀的硫化物)以及人类安全相关。向油田注入硝酸盐会刺激地下异养硝酸盐还原菌(hNRB)和硝酸盐还原、硫化物氧化菌(NR-SOB)。这些NRB通过部分还原硝酸盐形成的亚硝酸盐是一种强大且特异性的SRB抑制剂。因此,注入硝酸盐有望积极控制油田的硫循环。现在人们对应用石油微生物学的兴趣和潜力比过去更大,这使得微生物学家能够为可持续能源的未来做出贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验