Hegarty Avril, Barry Daniel
University of Limerick, Limerick, Ireland.
Stat Med. 2008 Aug 30;27(19):3868-93. doi: 10.1002/sim.3253.
Our objective is to develop a model to estimate the relative risk of disease in each area, Ai, i=1, ... , n, of a region and to identify areas of unusually high or low risk. We use a product partition model (PPM) in which we assume that the true relative risks can be partitioned into a number of components or sets of areas where the relative risks are equal. The PPM allows the data to weight those partitions likely to hold and inference about particular parameters may be made by first conditioning on the partition and then averaging over all partitions. We develop Markov chain Monte Carlo (MCMC) techniques to approximate the posterior distributions of the partitions and the parameters. We first test the method in a simulation study and then apply it to data for two separate groups of different types of cancer in the Mid-Western Health Board region in Ireland. The results are compared with those obtained using the standardized mortality ratio method, an empirical Bayes method, a spatial scan method and a nonparametric Bayesian method.
我们的目标是开发一个模型,用于估计某一地区各个区域(A_i)((i = 1, \ldots, n))的疾病相对风险,并识别风险异常高或低的区域。我们使用乘积划分模型(PPM),在此模型中,我们假设真实的相对风险可被划分为多个组成部分或相对风险相等的区域集。PPM允许数据对可能成立的划分进行加权,并且可以通过首先基于划分进行条件设定,然后对所有划分求平均值来对特定参数进行推断。我们开发了马尔可夫链蒙特卡罗(MCMC)技术来近似划分和参数的后验分布。我们首先在模拟研究中测试该方法,然后将其应用于爱尔兰中西部卫生委员会地区两组不同类型癌症的数据。将结果与使用标准化死亡率比方法、经验贝叶斯方法、空间扫描方法和非参数贝叶斯方法所获得的结果进行比较。