Suppr超能文献

使用扩散近似对随机动力学模型进行贝叶斯推断。

Bayesian inference for stochastic kinetic models using a diffusion approximation.

作者信息

Golightly A, Wilkinson D J

机构信息

School of Mathematics and Statistics, University of Newcastle, Newcastle Upon Tyne, NE1 7RU, UK.

出版信息

Biometrics. 2005 Sep;61(3):781-8. doi: 10.1111/j.1541-0420.2005.00345.x.

Abstract

This article is concerned with the Bayesian estimation of stochastic rate constants in the context of dynamic models of intracellular processes. The underlying discrete stochastic kinetic model is replaced by a diffusion approximation (or stochastic differential equation approach) where a white noise term models stochastic behavior and the model is identified using equispaced time course data. The estimation framework involves the introduction of m- 1 latent data points between every pair of observations. MCMC methods are then used to sample the posterior distribution of the latent process and the model parameters. The methodology is applied to the estimation of parameters in a prokaryotic autoregulatory gene network.

摘要

本文关注细胞内过程动态模型背景下随机速率常数的贝叶斯估计。潜在的离散随机动力学模型被扩散近似(或随机微分方程方法)所取代,其中白噪声项模拟随机行为,并且该模型使用等间隔时间进程数据来识别。估计框架涉及在每对观测值之间引入(m - 1)个潜在数据点。然后使用马尔可夫链蒙特卡罗(MCMC)方法对潜在过程和模型参数的后验分布进行采样。该方法应用于原核生物自调控基因网络中参数的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验