Salter Kelly H, Acharya Chaitanya R, Walters Kelli S, Redman Richard, Anguiano Ariel, Garman Katherine S, Anders Carey K, Mukherjee Sayan, Dressman Holly K, Barry William T, Marcom Kelly P, Olson John, Nevins Joseph R, Potti Anil
Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America.
PLoS One. 2008 Apr 2;3(4):e1908. doi: 10.1371/journal.pone.0001908.
A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective.
Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy.
Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities.
肿瘤学中的一个主要挑战是为个体患者选择最有效的化疗药物,而无效化疗的使用会增加癌症患者的死亡率并降低其生活质量。这凸显了评估每位患者对每种化疗药物反应概率的必要性,并将使用的药物限制在最可能有效的药物范围内。
利用NCI-60的基因表达数据及相应的药物敏感性,开发了代表对个体化疗药物敏感性的mRNA和微小RNA谱。在133例接受TFAC(紫杉醇、5-氟尿嘧啶、阿霉素和环磷酰胺)化疗方案治疗的乳腺癌患者独立队列中对mRNA特征进行了测试。为进一步剖析耐药生物学机制,我们应用致癌途径激活特征并进行层次聚类。然后我们使用化疗敏感性的mRNA特征来为对TFAC耐药的患者确定替代疗法。mRNA和微小RNA表达数据的特征代表了对常见细胞毒性药物耐药的不同生物学机制。个体mRNA特征在乳腺肿瘤独立数据集中得到验证(P = 0.002,阴性预测值 = 82%)。当基于分子变量分析特征的准确性时,发现基底样患者的预测能力高于非基底样患者(P = 0.03和P = 0.06)。Myc和E2F共同激活的患者样本代表了反应者比例最低(8%)的队列。利用对其他细胞毒性药物敏感性的mRNA特征,我们预测TFAC无反应者更可能对多西他赛敏感(P = 0.04),这是一种可行的替代疗法。
我们的结果表明,化疗敏感性预测的最佳策略是将诸如雌激素受体(ER)和人表皮生长因子受体2(HER2)状态等分子变量与相应的微小RNA和mRNA表达谱相结合。重要的是,我们还提供了证据支持这样的概念,即分子变量分析可为确定替代治疗机会提供合理策略。