Suppr超能文献

一种预测乳腺癌患者化疗反应的综合方法。

An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer.

作者信息

Salter Kelly H, Acharya Chaitanya R, Walters Kelli S, Redman Richard, Anguiano Ariel, Garman Katherine S, Anders Carey K, Mukherjee Sayan, Dressman Holly K, Barry William T, Marcom Kelly P, Olson John, Nevins Joseph R, Potti Anil

机构信息

Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America.

出版信息

PLoS One. 2008 Apr 2;3(4):e1908. doi: 10.1371/journal.pone.0001908.

Abstract

BACKGROUND

A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective.

METHODS AND RESULTS

Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy.

CONCLUSIONS

Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities.

摘要

背景

肿瘤学中的一个主要挑战是为个体患者选择最有效的化疗药物,而无效化疗的使用会增加癌症患者的死亡率并降低其生活质量。这凸显了评估每位患者对每种化疗药物反应概率的必要性,并将使用的药物限制在最可能有效的药物范围内。

方法与结果

利用NCI-60的基因表达数据及相应的药物敏感性,开发了代表对个体化疗药物敏感性的mRNA和微小RNA谱。在133例接受TFAC(紫杉醇、5-氟尿嘧啶、阿霉素和环磷酰胺)化疗方案治疗的乳腺癌患者独立队列中对mRNA特征进行了测试。为进一步剖析耐药生物学机制,我们应用致癌途径激活特征并进行层次聚类。然后我们使用化疗敏感性的mRNA特征来为对TFAC耐药的患者确定替代疗法。mRNA和微小RNA表达数据的特征代表了对常见细胞毒性药物耐药的不同生物学机制。个体mRNA特征在乳腺肿瘤独立数据集中得到验证(P = 0.002,阴性预测值 = 82%)。当基于分子变量分析特征的准确性时,发现基底样患者的预测能力高于非基底样患者(P = 0.03和P = 0.06)。Myc和E2F共同激活的患者样本代表了反应者比例最低(8%)的队列。利用对其他细胞毒性药物敏感性的mRNA特征,我们预测TFAC无反应者更可能对多西他赛敏感(P = 0.04),这是一种可行的替代疗法。

结论

我们的结果表明,化疗敏感性预测的最佳策略是将诸如雌激素受体(ER)和人表皮生长因子受体2(HER2)状态等分子变量与相应的微小RNA和mRNA表达谱相结合。重要的是,我们还提供了证据支持这样的概念,即分子变量分析可为确定替代治疗机会提供合理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d326/2270912/7c01a3641ffa/pone.0001908.g001.jpg

相似文献

1
4
miRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer.
Cell Death Dis. 2016 Jun 30;7(6):e2291. doi: 10.1038/cddis.2016.194.
7
Computational Cancer Cell Models to Guide Precision Breast Cancer Medicine.
Genes (Basel). 2020 Feb 28;11(3):263. doi: 10.3390/genes11030263.
10
Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer.
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8315-20. doi: 10.1073/pnas.0408974102. Epub 2005 May 24.

引用本文的文献

1
MicroRNAs as Molecular Biomarkers for the Characterization of Basal-like Breast Tumor Subtype.
Biomedicines. 2023 Nov 9;11(11):3007. doi: 10.3390/biomedicines11113007.
2
Alkylating anticancer agents and their relations to microRNAs.
Cancer Drug Resist. 2019 Mar 19;2(1):1-17. doi: 10.20517/cdr.2019.09. eCollection 2019.
3
MicroRNA as a Potential Therapeutic Molecule in Cancer.
Cells. 2022 Mar 16;11(6):1008. doi: 10.3390/cells11061008.
4
CONCORD biomarker prediction for novel drug introduction to different cancer types.
Oncotarget. 2017 Dec 9;9(1):1091-1106. doi: 10.18632/oncotarget.23124. eCollection 2018 Jan 2.
5
Patient-derived xenograft (PDX) models in basic and translational breast cancer research.
Cancer Metastasis Rev. 2016 Dec;35(4):547-573. doi: 10.1007/s10555-016-9653-x.
6
miR-34a inhibits cell proliferation in prostate cancer by downregulation of SIRT1 expression.
Oncol Lett. 2015 Nov;10(5):3223-3227. doi: 10.3892/ol.2015.3645. Epub 2015 Aug 26.
7
Analysis of circulating microRNAs during adjuvant chemotherapy in patients with luminal A breast cancer.
Mol Clin Oncol. 2015 Jul;3(4):954-958. doi: 10.3892/mco.2015.567. Epub 2015 May 13.
8
An overview of microRNAs.
Adv Drug Deliv Rev. 2015 Jun 29;87:3-14. doi: 10.1016/j.addr.2015.05.001. Epub 2015 May 12.
9
Two Faces of Cathepsin D: Physiological Guardian Angel and Pathological Demon.
Biol Med (Aligarh). 2014 Jul;6(2). doi: 10.4172/0974-8369.1000206.
10
[Advances in tumor chemo-resistance regulated by MicroRNA].
Zhongguo Fei Ai Za Zhi. 2014 Oct 20;17(10):741-9. doi: 10.3779/j.issn.1009-3419.2014.10.06.

本文引用的文献

2
Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2.
Cell Cycle. 2007 Nov 1;6(21):2585-90. doi: 10.4161/cc.6.21.4845. Epub 2007 Aug 6.
3
Pharmacogenomic predictor discovery in phase II clinical trials for breast cancer.
Clin Cancer Res. 2007 Oct 15;13(20):6080-6. doi: 10.1158/1078-0432.CCR-07-0809.
4
HER2 and response to paclitaxel in node-positive breast cancer.
N Engl J Med. 2007 Oct 11;357(15):1496-506. doi: 10.1056/NEJMoa071167.
6
p53-mediated activation of miRNA34 candidate tumor-suppressor genes.
Curr Biol. 2007 Aug 7;17(15):1298-307. doi: 10.1016/j.cub.2007.06.068. Epub 2007 Jul 26.
7
Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development.
Cancer Sci. 2007 Sep;98(9):1482-90. doi: 10.1111/j.1349-7006.2007.00531.x. Epub 2007 Jun 30.
8
Mining gene expression profiles: expression signatures as cancer phenotypes.
Nat Rev Genet. 2007 Aug;8(8):601-9. doi: 10.1038/nrg2137. Epub 2007 Jul 3.
9
A microRNA component of the p53 tumour suppressor network.
Nature. 2007 Jun 28;447(7148):1130-4. doi: 10.1038/nature05939. Epub 2007 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验