Suppr超能文献

细胞计数指纹图谱:多元分布的定量表征

Cytometric fingerprinting: quantitative characterization of multivariate distributions.

作者信息

Rogers Wade T, Moser Allan R, Holyst Herbert A, Bantly Andrew, Mohler Emile R, Scangas George, Moore Jonni S

机构信息

Cira Discovery Sciences, Inc., Philadelphia, Pennsylvania, USA.

出版信息

Cytometry A. 2008 May;73(5):430-41. doi: 10.1002/cyto.a.20545.

Abstract

Recent technological advances in flow cytometry instrumentation provide the basis for high-dimensionality and high-throughput biological experimentation in a heterogeneous cellular context. Concomitant advances in scalable computational algorithms are necessary to better utilize the information that is contained in these high-complexity experiments. The development of such tools has the potential to expand the utility of flow cytometric analysis from a predominantly hypothesis-driven mode to one of discovery, or hypothesis-generating research. A new method of analysis of flow cytometric data called Cytometric Fingerprinting (CF) has been developed. CF captures the set of multivariate probability distribution functions corresponding to list-mode data and then "flattens" them into a computationally efficient fingerprint representation that facilitates quantitative comparisons of samples. An experimental and synthetic data were generated to act as reference sets for evaluating CF. Without the introduction of prior knowledge, CF was able to "discover" the location and concentration of spiked cells in ungated analyses over a concentration range covering four orders of magnitude, to a lower limit on the order of 10 spiked events in a background of 100,000 events. We describe a new method for quantitative analysis of list-mode cytometric data. CF includes a novel algorithm for space subdivision that improves estimation of the probability density function by dividing space into nonrectangular polytopes. Additionally it renders a multidimensional distribution in the form of a one-dimensional multiresolution hierarchical fingerprint that creates a computationally efficient representation of high dimensionality distribution functions. CF supports both the generation and testing of hypotheses, eliminates sources of operator bias, and provides an increased level of automation of data analysis.

摘要

流式细胞仪技术的最新进展为在异质细胞环境中进行高维度和高通量生物学实验提供了基础。同时,可扩展计算算法的进步对于更好地利用这些高复杂性实验中包含的信息是必要的。此类工具的开发有可能将流式细胞术分析的效用从主要由假设驱动的模式扩展到发现或假设生成研究模式。一种名为细胞指纹识别(CF)的流式细胞术数据分析新方法已经开发出来。CF捕获与列表模式数据相对应的多变量概率分布函数集,然后将它们“扁平化”为一种计算效率高的指纹表示形式,便于对样本进行定量比较。生成了实验数据和合成数据作为评估CF的参考集。在不引入先验知识的情况下,CF能够在覆盖四个数量级的浓度范围内,在非门控分析中“发现”加标细胞的位置和浓度,在100,000个事件的背景下,下限约为10个加标事件。我们描述了一种用于列表模式细胞术数据定量分析的新方法。CF包括一种用于空间细分的新颖算法,该算法通过将空间划分为非矩形多面体来改进概率密度函数的估计。此外,它以一维多分辨率分层指纹的形式呈现多维分布,从而创建高维分布函数的计算效率高的表示形式。CF支持假设的生成和检验,消除了操作员偏差的来源,并提高了数据分析的自动化水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验