Gordon J J, Siebers J V
Department of Radiation Oncology, Virginia Commonwealth University, PO Box 980058, Richmond, VA 23298, USA.
Med Phys. 2008 Feb;35(2):569-75. doi: 10.1118/1.2826558.
This work introduces a new concept--the dosimetric margin distribution (DMD)--and uses it to explain the sensitivity of a group of prostate IMRT treatment plans to patient setup errors. Prior work simulated the effect of setup errors on 27 prostate IMRT treatment plans and found the plans could tolerate larger setup errors than predicted by the van Herk margin formula. The conjectured reason for this disagreement was a breakdown in van Herk's assumption that the planned dose distribution conforms perfectly to target structures. To resolve the disagreement, this work employed the same 27 plans to evaluate the actual margin distributions that exist between: (i) the clinical target volume (CTV) and planning target volume (PTV) and (ii) the CTV and PTV minimum dose isodose surface. These distributions were evaluated for both prostate and nodal targets. Distribution (ii) is the DMD. The dosimetric margin in a given direction determines the probability that the CTV will be underdosed due to setup errors in that direction. Averaging over 4 pi sr gives the overall probability of CTV coverage. Minimum doses for prostate and nodal PTVs were obtained from dose volume histograms. Corresponding isodose surfaces were created and converted to regions of interest (ROIs). CTV, PTV, and isodose ROIs were saved as mesh files and then imported into a computational geometry application which calculated distances between meshes (i.e., margins) in 614 discrete directions covering 4 pi sr in 10 deg increments. Measured prostate CTV-to-PTV margins were close to the nominal value of 0.5 cm specified in the treatment planning protocol. However, depending on direction, prostate dosimetric margins ranged from 0.5 to 3 cm, reflecting the imperfect conformance of the planned dose distribution to the prostate PTV. For the nodal CTV, the nominal CTV-to-PTV margin employed in treatment planning was again 0.5 cm. However, due to the planning protocol, the nodal PTV follows the surface of the nodal CTV in several places, ensuring that there is no room for rigid body motion of the nodal CTV inside the nodal PTV. Measured nodal CTV-to-PTV margins were therefore zero, while nodal dosimetric margins ranged from 0.2 to 2.8 cm. Prostate and nodal target coverage were found to be well correlated with the measured DMDs, thereby resolving the apparent disagreement with our prior results. The principal conclusion is that target coverage in the presence of setup errors should be evaluated using the DMD, rather than the CTV-to-PTV margin distribution. The DMD is a useful planning metric, which generalizes the ICRU conformity index. DMDs could vary with number of beams, beam arrangements, TPS, and treatment site.
这项工作引入了一个新概念——剂量学边界分布(DMD),并使用它来解释一组前列腺调强放射治疗(IMRT)计划对患者摆位误差的敏感性。先前的工作模拟了摆位误差对27个前列腺IMRT治疗计划的影响,发现这些计划能够耐受比范·赫克边界公式预测的更大的摆位误差。对此差异的推测原因是范·赫克假设计划剂量分布与靶区结构完美契合这一假设不成立。为了解决这一差异,这项工作采用相同的27个计划来评估存在于以下两者之间的实际边界分布:(i)临床靶区(CTV)与计划靶区(PTV),以及(ii)CTV与PTV最小剂量等剂量面。对前列腺和淋巴结靶区均评估了这些分布。分布(ii)即为DMD。给定方向上的剂量学边界决定了由于该方向上的摆位误差导致CTV剂量不足的概率。对4π球面度进行平均得出CTV覆盖的总体概率。前列腺和淋巴结PTV的最小剂量从剂量体积直方图中获取。创建相应的等剂量面并将其转换为感兴趣区域(ROI)。CTV、PTV和等剂量ROI保存为网格文件,然后导入到一个计算几何应用程序中,该程序计算在以10°增量覆盖4π球面度的614个离散方向上网格之间的距离(即边界)。测量得到的前列腺CTV到PTV的边界接近治疗计划协议中规定的0.5 cm标称值。然而,根据方向不同,前列腺剂量学边界范围为0.5至3 cm,这反映了计划剂量分布与前列腺PTV的契合并不完美。对于淋巴结CTV,治疗计划中使用的标称CTV到PTV边界同样为0.5 cm。然而,由于计划协议,淋巴结PTV在几个位置跟随淋巴结CTV的表面,确保淋巴结CTV在淋巴结PTV内没有刚体运动的空间。因此,测量得到的淋巴结CTV到PTV的边界为零,而淋巴结剂量学边界范围为0.2至2.8 cm。发现前列腺和淋巴结靶区覆盖与测量得到的DMD密切相关,从而解决了与我们先前结果的明显差异。主要结论是,在存在摆位误差的情况下,应使用DMD而非CTV到PTV的边界分布来评估靶区覆盖情况。DMD是一种有用的计划指标,它推广了国际辐射单位与测量委员会(ICRU)的适形指数。DMD可能会因射野数量、射野布置、治疗计划系统(TPS)和治疗部位而有所不同。