Trapp Oliver, Weber Sven K, Bauch Sabrina, Bäcker Tobias, Hofstadt Werner, Spliethoff Bernd
Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
Chemistry. 2008;14(15):4657-66. doi: 10.1002/chem.200701780.
The hydrogenation of 1-acetylcyclohexene, cyclohex-2-enone, nitrobenzene, and trans-methylpent-3-enoate catalyzed by highly active palladium nanoparticles was studied by high-throughput on-column reaction gas chromatography. In these experiments, catalysis and separation of educts and products is integrated by the use of a catalytically active gas chromatographic stationary phase, which allows reaction rate measurements to be efficiently performed by employing reactant libraries. Palladium nanoparticles embedded in a stabilizing polysiloxane matrix serve as catalyst and selective chromatographic stationary phase for these multiphase reactions (gas-liquid-solid) and are coated in fused-silica capillaries (inner diameter 250 microm) as a thin film of thickness 250 nm. The palladium nanoparticles were prepared by reduction of palladium acetate with hydridomethylsiloxane-dimethylsiloxane copolymer and self-catalyzed hydrosilylation with methylvinylsiloxane-dimethylsiloxane copolymer to obtain a stabilizing matrix. Diphenylsiloxane-dimethylsiloxane copolymer (GE SE 52) was added to improve film stability over a wide range of compositions. Herein, we show by systematic TEM investigations that the size and morphology (crystalline or amorphous) of the nanoparticles strongly depends on the ratio of the stabilizing polysiloxanes, the conditions to immobilize the stationary phase on the surface of the fused-silica capillary, and the loading of the palladium precursor. Furthermore, hydrogenations were performed with these catalytically active stationary phases between 60 and 100 degrees C at various contact times to determine the temperature-dependent reaction rate constants and to obtain activation parameters and diffusion coefficients.
采用高通量柱上反应气相色谱法研究了高活性钯纳米颗粒催化的1-乙酰基环己烯、环己-2-烯酮、硝基苯和反式甲基戊-3-烯酸酯的氢化反应。在这些实验中,通过使用具有催化活性的气相色谱固定相,将反应物和产物的催化与分离结合起来,这使得通过使用反应物库能够高效地进行反应速率测量。嵌入稳定化聚硅氧烷基质中的钯纳米颗粒用作这些多相反应(气-液-固)的催化剂和选择性色谱固定相,并以厚度为250 nm的薄膜形式涂覆在熔融石英毛细管(内径250微米)中。钯纳米颗粒是通过用氢化甲基硅氧烷-二甲基硅氧烷共聚物还原醋酸钯并与甲基乙烯基硅氧烷-二甲基硅氧烷共聚物进行自催化氢化硅烷化反应以获得稳定化基质而制备的。添加二苯基硅氧烷-二甲基硅氧烷共聚物(GE SE 52)以在广泛的组成范围内提高膜的稳定性。在此,我们通过系统的透射电子显微镜研究表明,纳米颗粒的尺寸和形态(结晶或无定形)强烈取决于稳定化聚硅氧烷的比例、将固定相固定在熔融石英毛细管表面的条件以及钯前驱体的负载量。此外,使用这些具有催化活性的固定相在60至100摄氏度之间、不同接触时间下进行氢化反应,以确定温度依赖性反应速率常数,并获得活化参数和扩散系数。