Suppr超能文献

CRIP同源物维持顶端细胞骨架以调节秀丽隐杆线虫的小管大小。

CRIP homologues maintain apical cytoskeleton to regulate tubule size in C. elegans.

作者信息

Tong Xiangyan, Buechner Matthew

机构信息

Department of Molecular Biosciences, 1200 Sunnyside Drive, 8035 Haworth Hall, University of Kansas, Lawrence, KS 66045-7534, USA.

出版信息

Dev Biol. 2008 May 1;317(1):225-33. doi: 10.1016/j.ydbio.2008.02.040. Epub 2008 Mar 4.

Abstract

Maintenance of the shape and diameter of biological tubules is a critical task in the development and physiology of all metazoan organisms. We have cloned the exc-9 gene of Caenorhabditis elegans, which regulates the diameter of the single-cell excretory canal tubules. exc-9 encodes a homologue of the highly expressed mammalian intestinal LIM-domain protein CRIP, whose function has not previously been determined. A second well-conserved CRIP homologue functions in multiple valves of C. elegans. EXC-9 shows genetic interactions with other EXC proteins, including the EXC-5 guanine exchange factor that regulates CDC-42 activity. EXC-9 and its nematode homologue act in polarized epithelial cells that must maintain great flexibility at their apical surface; our results suggest that CRIPs function to maintain cytoskeletal flexibility at the apical surface.

摘要

维持生物小管的形状和直径是所有后生动物发育和生理过程中的一项关键任务。我们克隆了秀丽隐杆线虫的exc-9基因,该基因调节单细胞排泄管小管的直径。exc-9编码高度表达的哺乳动物肠道LIM结构域蛋白CRIP的同源物,其功能此前尚未确定。第二个保守性良好的CRIP同源物在秀丽隐杆线虫的多个瓣膜中发挥作用。EXC-9与其他EXC蛋白存在遗传相互作用,包括调节CDC-42活性的EXC-5鸟嘌呤交换因子。EXC-9及其线虫同源物在极化上皮细胞中起作用,这些细胞必须在其顶端表面保持极大的灵活性;我们的结果表明,CRIPs的功能是维持顶端表面的细胞骨架灵活性。

相似文献

1
CRIP homologues maintain apical cytoskeleton to regulate tubule size in C. elegans.
Dev Biol. 2008 May 1;317(1):225-33. doi: 10.1016/j.ydbio.2008.02.040. Epub 2008 Mar 4.
2
Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans.
Genetics. 2016 Aug;203(4):1789-806. doi: 10.1534/genetics.116.192559. Epub 2016 Jun 22.
3
The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules.
Dev Biol. 2011 Nov 1;359(1):59-72. doi: 10.1016/j.ydbio.2011.08.011. Epub 2011 Aug 26.
5
The role of the ELAV homologue EXC-7 in the development of the Caenorhabditis elegans excretory canals.
Dev Biol. 2003 Apr 15;256(2):290-301. doi: 10.1016/s0012-1606(03)00040-x.
6
Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in .
Genetics. 2018 Oct;210(2):637-652. doi: 10.1534/genetics.118.301078. Epub 2018 Jun 26.
7
A C. elegans CLIC-like protein required for intracellular tube formation and maintenance.
Science. 2003 Dec 19;302(5653):2134-7. doi: 10.1126/science.1087667.
8
Terminal web and vesicle trafficking proteins mediate nematode single-cell tubulogenesis.
J Cell Biol. 2020 Nov 2;219(11). doi: 10.1083/jcb.202003152.
9
Novel Genes Involved in Formation of the Tubular Excretory Canals of .
G3 (Bethesda). 2019 May 7;9(5):1339-1353. doi: 10.1534/g3.119.200626.

引用本文的文献

1
PIEZO acts in an intestinal valve to regulate swallowing in C. elegans.
Nat Commun. 2024 Nov 21;15(1):10072. doi: 10.1038/s41467-024-54362-3.
2
MRCK-1 activates non-muscle myosin for outgrowth of a unicellular tube in Caenorhabditis elegans.
Development. 2024 Dec 1;151(23). doi: 10.1242/dev.202772. Epub 2024 Nov 29.
3
Epithelial morphogenesis, tubulogenesis and forces in organogenesis.
Curr Top Dev Biol. 2021;144:161-214. doi: 10.1016/bs.ctdb.2020.12.012. Epub 2021 Feb 8.
5
A Series of Tubes: The Excretory Canal Cell as a Model for Tubule Development.
J Dev Biol. 2020 Sep 7;8(3):17. doi: 10.3390/jdb8030017.
6
Terminal web and vesicle trafficking proteins mediate nematode single-cell tubulogenesis.
J Cell Biol. 2020 Nov 2;219(11). doi: 10.1083/jcb.202003152.
7
Novel Genes Involved in Formation of the Tubular Excretory Canals of .
G3 (Bethesda). 2019 May 7;9(5):1339-1353. doi: 10.1534/g3.119.200626.
8
Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in .
Genetics. 2018 Oct;210(2):637-652. doi: 10.1534/genetics.118.301078. Epub 2018 Jun 26.
9
Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans.
Genetics. 2016 Aug;203(4):1789-806. doi: 10.1534/genetics.116.192559. Epub 2016 Jun 22.

本文引用的文献

1
Male development.
WormBook. 2005 Nov 10:1-22. doi: 10.1895/wormbook.1.33.1.
3
The emergence of shape: notions from the study of the Drosophila tracheal system.
EMBO Rep. 2007 Apr;8(4):335-9. doi: 10.1038/sj.embor.7400942.
4
Genes required for osmoregulation and apical secretion in Caenorhabditis elegans.
Genetics. 2007 Feb;175(2):709-24. doi: 10.1534/genetics.106.066035. Epub 2006 Dec 18.
5
From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis.
Differentiation. 2006 Sep;74(7):326-48. doi: 10.1111/j.1432-0436.2006.00095.x.
6
Social interactions among epithelial cells during tracheal branching morphogenesis.
Nature. 2006 Jun 8;441(7094):746-9. doi: 10.1038/nature04829.
8
SMA-1 spectrin has essential roles in epithelial cell sheet morphogenesis in C. elegans.
Dev Biol. 2005 Jul 1;283(1):157-70. doi: 10.1016/j.ydbio.2005.04.002.
9
The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development.
Biochim Biophys Acta. 2004 Nov 29;1695(1-3):45-54. doi: 10.1016/j.bbamcr.2004.09.023.
10
Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1.
Dev Cell. 2004 Jun;6(6):865-73. doi: 10.1016/j.devcel.2004.05.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验