Suppr超能文献

基于敏感性编码(SENSE)的并行成像中用于通道减少的自动线圈选择

Automatic coil selection for channel reduction in SENSE-based parallel imaging.

作者信息

Doneva Mariya, Börnert Peter

机构信息

University of Oldenburg, Oldenburg, Germany.

出版信息

MAGMA. 2008 May;21(3):187-96. doi: 10.1007/s10334-008-0110-x. Epub 2008 Apr 3.

Abstract

OBJECTIVE

Coil arrays with large number of receive elements allow improved imaging performance and higher signal-to-noise-ratio. The MR systems supporting these arrays have to handle an increased amount of data and higher reconstruction burden. To overcome these problems, data reduction techniques need to be applied, realized either by linear combination of the original coil data prior to reconstruction or by discarding particular data from unimportant coil elements.

MATERIALS AND METHODS

This work focuses on the latter approach and presents an efficient algorithm for automatic coil selection applicable to SENSE imaging. A singular value decomposition (SVD)-based coil selection is proposed that performs a coil element ranking quantifying the contribution of each coil element to the image reconstruction allowing appropriate coil selection. This approach makes use of the coil sensitivity information and takes reduction factor and phase encoding direction into account.

RESULTS

Simulations, phantom and in vivo experiments were performed to validate the SVD-based coil selection algorithm. The proposed approach proved to be computationally efficient without remarkable image quality degradation.

CONCLUSION

The SVD-based approach offers the opportunity for fast automatic coil selection. This could simplify clinical workflow and may, furthermore, pave the way for various 2D real-time and interventional applications.

摘要

目的

具有大量接收元件的线圈阵列可改善成像性能并提高信噪比。支持这些阵列的磁共振系统必须处理增加的数据量和更高的重建负担。为克服这些问题,需要应用数据缩减技术,可通过在重建前对原始线圈数据进行线性组合来实现,也可通过舍弃不重要线圈元件的特定数据来实现。

材料与方法

本研究聚焦于后一种方法,并提出一种适用于灵敏度编码(SENSE)成像的自动线圈选择高效算法。提出了一种基于奇异值分解(SVD)的线圈选择方法,该方法对线圈元件进行排序,量化每个线圈元件对图像重建的贡献,从而实现合适的线圈选择。此方法利用了线圈灵敏度信息,并考虑了缩减因子和相位编码方向。

结果

进行了模拟、体模和体内实验以验证基于SVD的线圈选择算法。所提出的方法被证明计算效率高,且图像质量无明显下降。

结论

基于SVD的方法为快速自动线圈选择提供了机会。这可简化临床工作流程,此外,还可能为各种二维实时和介入应用铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验