Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.
National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.
Magn Reson Med. 2018 May;79(5):2542-2554. doi: 10.1002/mrm.26902. Epub 2017 Sep 1.
To develop a rapid imaging framework for balanced steady-state free precession (bSSFP) that jointly reconstructs undersampled data (by a factor of R) across multiple coils (D) and multiple acquisitions (N). To devise a multi-acquisition coil compression technique for improved computational efficiency.
The bSSFP image for a given coil and acquisition is modeled to be modulated by a coil sensitivity and a bSSFP profile. The proposed reconstruction by calibration over tensors (ReCat) recovers missing data by tensor interpolation over the coil and acquisition dimensions. Coil compression is achieved using a new method based on multilinear singular value decomposition (MLCC). ReCat is compared with iterative self-consistent parallel imaging (SPIRiT) and profile encoding (PE-SSFP) reconstructions.
Compared to parallel imaging or profile-encoding methods, ReCat attains sensitive depiction of high-spatial-frequency information even at higher R. In the brain, ReCat improves peak SNR (PSNR) by 1.1 ± 1.0 dB over SPIRiT and by 0.9 ± 0.3 dB over PE-SSFP (mean ± SD across subjects; average for N = 2-8, R = 8-16). Furthermore, reconstructions based on MLCC achieve 0.8 ± 0.6 dB higher PSNR compared to those based on geometric coil compression (GCC) (average for N = 2-8, R = 4-16).
ReCat is a promising acceleration framework for banding-artifact-free bSSFP imaging with high image quality; and MLCC offers improved computational efficiency for tensor-based reconstructions. Magn Reson Med 79:2542-2554, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
开发一种用于平衡稳态自由进动(bSSFP)的快速成像框架,该框架可以跨多个线圈(D)和多个采集(N)联合重建欠采样数据(R 倍)。设计一种多采集线圈压缩技术,以提高计算效率。
对给定线圈和采集的 bSSFP 图像进行建模,使其由线圈灵敏度和 bSSFP 轮廓调制。所提出的通过张量校准(ReCat)重建通过在线圈和采集维度上进行张量插值来恢复缺失数据。线圈压缩是通过基于多线性奇异值分解(MLCC)的新方法实现的。ReCat 与迭代自一致并行成像(SPIRiT)和轮廓编码(PE-SSFP)重建进行比较。
与并行成像或轮廓编码方法相比,ReCat 即使在更高的 R 下也能实现高空间频率信息的敏感描绘。在大脑中,ReCat 相对于 SPIRiT 提高了 1.1±1.0dB 的峰值信噪比(PSNR),相对于 PE-SSFP 提高了 0.9±0.3dB(跨受试者的平均值;平均 N=2-8,R=8-16)。此外,基于 MLCC 的重建比基于几何线圈压缩(GCC)的重建获得 0.8±0.6dB 更高的 PSNR(平均 N=2-8,R=4-16)。
ReCat 是一种很有前途的加速框架,用于带伪影的 bSSFP 成像,具有高质量;并且 MLCC 为基于张量的重建提供了更高的计算效率。磁共振医学 79:2542-2554, 2018。©2017 国际磁共振学会。