Suppr超能文献

张量标定重建在多线圈多采集平衡稳态自由进动成像中的应用。

Reconstruction by calibration over tensors for multi-coil multi-acquisition balanced SSFP imaging.

机构信息

Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.

National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.

出版信息

Magn Reson Med. 2018 May;79(5):2542-2554. doi: 10.1002/mrm.26902. Epub 2017 Sep 1.

Abstract

PURPOSE

To develop a rapid imaging framework for balanced steady-state free precession (bSSFP) that jointly reconstructs undersampled data (by a factor of R) across multiple coils (D) and multiple acquisitions (N). To devise a multi-acquisition coil compression technique for improved computational efficiency.

METHODS

The bSSFP image for a given coil and acquisition is modeled to be modulated by a coil sensitivity and a bSSFP profile. The proposed reconstruction by calibration over tensors (ReCat) recovers missing data by tensor interpolation over the coil and acquisition dimensions. Coil compression is achieved using a new method based on multilinear singular value decomposition (MLCC). ReCat is compared with iterative self-consistent parallel imaging (SPIRiT) and profile encoding (PE-SSFP) reconstructions.

RESULTS

Compared to parallel imaging or profile-encoding methods, ReCat attains sensitive depiction of high-spatial-frequency information even at higher R. In the brain, ReCat improves peak SNR (PSNR) by 1.1 ± 1.0 dB over SPIRiT and by 0.9 ± 0.3 dB over PE-SSFP (mean ± SD across subjects; average for N = 2-8, R = 8-16). Furthermore, reconstructions based on MLCC achieve 0.8 ± 0.6 dB higher PSNR compared to those based on geometric coil compression (GCC) (average for N = 2-8, R = 4-16).

CONCLUSION

ReCat is a promising acceleration framework for banding-artifact-free bSSFP imaging with high image quality; and MLCC offers improved computational efficiency for tensor-based reconstructions. Magn Reson Med 79:2542-2554, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

开发一种用于平衡稳态自由进动(bSSFP)的快速成像框架,该框架可以跨多个线圈(D)和多个采集(N)联合重建欠采样数据(R 倍)。设计一种多采集线圈压缩技术,以提高计算效率。

方法

对给定线圈和采集的 bSSFP 图像进行建模,使其由线圈灵敏度和 bSSFP 轮廓调制。所提出的通过张量校准(ReCat)重建通过在线圈和采集维度上进行张量插值来恢复缺失数据。线圈压缩是通过基于多线性奇异值分解(MLCC)的新方法实现的。ReCat 与迭代自一致并行成像(SPIRiT)和轮廓编码(PE-SSFP)重建进行比较。

结果

与并行成像或轮廓编码方法相比,ReCat 即使在更高的 R 下也能实现高空间频率信息的敏感描绘。在大脑中,ReCat 相对于 SPIRiT 提高了 1.1±1.0dB 的峰值信噪比(PSNR),相对于 PE-SSFP 提高了 0.9±0.3dB(跨受试者的平均值;平均 N=2-8,R=8-16)。此外,基于 MLCC 的重建比基于几何线圈压缩(GCC)的重建获得 0.8±0.6dB 更高的 PSNR(平均 N=2-8,R=4-16)。

结论

ReCat 是一种很有前途的加速框架,用于带伪影的 bSSFP 成像,具有高质量;并且 MLCC 为基于张量的重建提供了更高的计算效率。磁共振医学 79:2542-2554, 2018。©2017 国际磁共振学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验