Suppr超能文献

经典的韦尔斯-道森多金属氧酸盐,K6[α-P2W18O62].14H2O。回答一个有88年历史的问题:其首选的最佳合成方法是什么?

The classic Wells-Dawson polyoxometalate, K6[alpha-P2W18O62].14H2O. Answering an 88 year-old question: what is its preferred, optimum synthesis?

作者信息

Graham Christopher R, Finke Richard G

机构信息

Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.

出版信息

Inorg Chem. 2008 May 5;47(9):3679-86. doi: 10.1021/ic702295y. Epub 2008 Apr 4.

Abstract

The 88-year-old problem of developing a preferred, optimized synthesis of the prototype Wells-Dawson polyoxometalate, K6[alpha-P2W18O62].14H2O, is addressed herein. Specifically, six published syntheses of K6[alpha-P2W18O62].14H2O are listed and discussed, with emphasis given to the two most recent syntheses, Nadjo and co-workers' 2004 synthesis and a 1997 Inorganic Syntheses procedure by Droege, Randall, Finke et al. (hereafter D-R-F). For the starting experiment, the synthesis by Nadjo and co-workers was repeated. Next, the D-R-F synthesis and then the earlier (1984) synthesis in Droege's Ph.D. thesis were repeated and reinvestigated. The results demonstrate that the Nadjo synthesis produces over 200 g of high alpha-isomer purity (> or =97% by (31)P NMR) K6[alpha-P 2W18O62].14H2O in four steps over 8 days in 93% yield in our hands. A recrystallization step added as part of this work (for a total of five steps over 12 days) produces an increase in purity (>99%) with a concomitant loss of 8% yield (i.e., 85% overall yield) for the Nadjo-plus-recrystallization synthesis. Next, the D-R-F Inorganic Syntheses procedure was reinvestigated to determine the cause of "failed syntheses" occasionally encountered in our laboratories, the most recent and worst example to date being when one of us (C.R.G.) found 150 g of K10[alpha2-P 2W17O61] as an undesired side product when, as it turns out, the D-R-F Inorganic Syntheses procedure is followed rather than the earlier Droege synthesis. Specifically, it is shown that the problem in the Inorganic Syntheses procedure is that it ambiguously says to add 210 mL of HCl until a pH of 3-4 is reached when, in fact, it takes only 130-150 mL of HCL to reach a pH 3-4. Adding the full 210 mL of HCl ensures that a pH <2 is reached, as is required to produce isomerically pure K6[alpha-P 2W18O62].14H2O from the K 10[alpha 2-P 2W 17O 61] intermediate. The result is K6[alpha-P2W18O62].14H2O in five steps over 10 days in 82% yield and > or =97% purity. A table is provided comparing the details of the two best syntheses as reported herein: the Nadjo-plus-recrystallization synthesis and the D-R-F synthesis (with sufficient added HCl/proper pH control). That table makes apparent that the Nadjo-plus-recrystallization synthesis is improved on the basis of its better atom economy, its slightly higher product yields (85% vs 82%), slightly better purity (>99% vs >97%), and its comparable time (2 days shorter without recrystallization but 2 days longer with recrystallization) in comparison to the D-R-F synthesis with proper pH <2 control. Perhaps most importantly, some take-home messages concerning polyoxometalate synthesis illustrated by the iterative, 88 year-old quest to the best K6[alpha-P 2W18O62].14H2O synthesis are summarized and briefly discussed.

摘要

本文探讨了一个有着88年历史的问题,即如何开发出一种优选的、优化的原型Wells-Dawson多金属氧酸盐K6[α-P2W18O62]·14H2O的合成方法。具体而言,本文列出并讨论了已发表的六种K6[α-P2W18O62]·14H2O的合成方法,重点关注了其中两种最新的合成方法,即Nadjo及其同事在2004年的合成方法以及1997年由Droege、Randall、Finke等人(以下简称D-R-F)发表在《无机合成》上的方法。在起始实验中,重复了Nadjo及其同事的合成方法。接下来,重复并重新研究了D-R-F的合成方法以及Droege博士论文中更早(1984年)的合成方法。结果表明,在我们的实验中,Nadjo合成法在8天内分四步可制得超过200克高α-异构体纯度(通过31P NMR分析≥97%)的K6[α-P2W18O62]·14H2O,产率为93%。作为本研究的一部分增加的重结晶步骤(总共12天分五步)可使纯度提高(>99%),但Nadjo合成法加上重结晶步骤的产率会相应损失8%(即总产率为85%)。接下来,重新研究了D-R-F的《无机合成》方法,以确定我们实验室偶尔遇到的“合成失败”的原因,迄今为止最严重的一个例子是我们中的一人(C.R.G.)发现当按照D-R-F的《无机合成》方法而非更早的Droege合成法操作时,会产生150克不需要的副产物K10[α2-P2W17O61]。具体而言,研究表明《无机合成》方法中的问题在于,它含糊地说要加入210毫升盐酸直到pH值达到3 - 4,但实际上达到pH 3 - 4只需130 - 150毫升盐酸。加入全部210毫升盐酸会确保pH值<2,这是从K10[α2-P2W17O61]中间体生成异构体纯的K6[α-P2W18O62]·14H2O所必需的。结果是在10天内分五步制得K6[α-P2W18O62]·14H2O,产率为82%,纯度≥97%。本文提供了一个表格,比较了本文报道的两种最佳合成方法的细节:Nadjo合成法加上重结晶步骤和D-R-F合成法(加入足够的盐酸/适当控制pH值)。该表格表明,与pH值<2控制得当的D-R-F合成法相比,Nadjo合成法加上重结晶步骤在原子经济性更好、产品产率略高(85%对82%)、纯度略高(>99%对>97%)以及时间相当(不进行重结晶时短2天,但进行重结晶时长2天)的基础上有所改进。也许最重要的是,总结并简要讨论了一些关于多金属氧酸盐合成的要点,这些要点通过对最佳K6[α-P2W18O62]·14H2O合成方法长达88年的反复探索得以体现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验