Suppr超能文献

将临床和人口统计学数据纳入埃利克斯豪泽共病模型:在一家三级医院内科推导并验证一个增强模型。

Incorporating clinical and demographic data into the Elixhauser Comorbidity Model: deriving and validating an enhanced model in a tertiary hospital's internal medicine department.

作者信息

Leibner Gideon, Katz David E, Esayag Yaakov, Kaufman Nechama, Brammli-Greenberg Shuli, Rose Adam J

机构信息

Faculty of Medicine, Hebrew University of Jerusalem, P.O box 182, Beit-Horon, Jerusalem, 9093500, Israel.

Department of Internal Medicine, Shaare Zedek Medical Center, Jerusalem, Israel.

出版信息

BMC Health Serv Res. 2024 Dec 5;24(1):1523. doi: 10.1186/s12913-024-11663-z.

Abstract

BACKGROUND AND OBJECTIVES

The Elixhauser Comorbidity Model is a prominent, freely-available risk adjustment model which performs well in predicting outcomes of inpatient care. However, because it relies solely on diagnosis codes, it may not capture the full extent of patient complexity. Our objective was to enhance and validatethe Elixhauser Model by incorporating additional clinical and demographic data to improve the accuracy of outcome prediction.

METHODS

This retrospective observational cohort study included 55,945 admissions to the internal medicine service of a large tertiary care hospital in Jerusalem. A model was derived and validated to predict four primary outcomes. The four primary outcomes measured were length of stay (LOS), in-hospital mortality, readmission within 30 days, and increased care.

RESULTS

Initially, the Elixhauser Model was applied using standard Elixhauser definitions based on diagnosis codes. Subsequently, clinical variables such as laboratory test results, vital signs, and demographic information were added to the model. The expanded models demonstrated improved prediction compared to the baseline model. For example, the R for log LOS improved from 0.101 to 0.281 and the c-statistic to predict in-hospital mortality improved from 0.711 to 0.879.

CONCLUSIONS

Adding readily available clinical and demographic data to the base Elixhauser model improves outcome prediction by a considerable margin. This enhanced model provides a more comprehensive representation of patients' health status. It could be utilized to support decisions regarding admission and to what setting, determine suitability for home hospitalization, and facilitate differential payment adjustments based on patient complexity.

摘要

背景与目的

埃利克斯豪泽共病模型是一种著名的、可免费获取的风险调整模型,在预测住院治疗结果方面表现良好。然而,由于它仅依赖诊断编码,可能无法全面反映患者的复杂程度。我们的目标是通过纳入额外的临床和人口统计学数据来增强和验证埃利克斯豪泽模型,以提高结果预测的准确性。

方法

这项回顾性观察队列研究纳入了耶路撒冷一家大型三级护理医院内科服务的55945例住院病例。推导并验证了一个模型来预测四个主要结果。所测量的四个主要结果为住院时间(LOS)、院内死亡率、30天内再入院率以及护理需求增加情况。

结果

最初,基于诊断编码使用标准的埃利克斯豪泽定义应用埃利克斯豪泽模型。随后,将实验室检查结果、生命体征和人口统计学信息等临床变量添加到模型中。与基线模型相比,扩展后的模型显示出更好的预测效果。例如,对数住院时间的R值从0.101提高到0.281,预测院内死亡率的c统计量从0.711提高到0.879。

结论

在基础的埃利克斯豪泽模型中添加易于获取的临床和人口统计学数据可显著提高结果预测能力。这种增强后的模型能更全面地反映患者的健康状况。它可用于支持入院决策以及确定入院科室、判断是否适合居家住院,并便于根据患者的复杂程度进行差别支付调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ed5/11619165/6605b7ce116d/12913_2024_11663_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验