Suppr超能文献

凯撒永久住院患者风险调整方法在外部患者群体中是有效的。

The Kaiser Permanente inpatient risk adjustment methodology was valid in an external patient population.

机构信息

Ottawa Health Research Institute, A581-003 Carling Ave, Ottawa, Ontario K1Y 4E9, Canada.

出版信息

J Clin Epidemiol. 2010 Jul;63(7):798-803. doi: 10.1016/j.jclinepi.2009.08.020. Epub 2009 Dec 11.

Abstract

OBJECTIVES

Accurately predicting hospital mortality is necessary to measure and compare patient care. External validation of predictive models is required to truly prove their utility. This study assessed the Kaiser Permanente inpatient risk adjustment methodology for hospital mortality in a patient population distinct from that used for its derivation.

STUDY DESIGN AND SETTING

Retrospective cohort study at two hospitals in Ottawa, Canada, involving all inpatients admitted between January 1998 and April 2002 (n=188,724). Statistical models for inpatient mortality were derived on a random half of the cohort and validated on the other half.

RESULTS

Inpatient mortality was 3.3%. The model using original parameter estimates had excellent discrimination (c-statistic 89.4, 95% confidence interval [CI] 0.891-0.898) but poor calibration. Using data-based parameter estimates, discrimination was excellent (c-statistic 0.915, 95% CI 0.912-0.918) and remained so when patient comorbidity was expressed in the model using the Elixhauser Index (0.901, 0.898-0.904) or the Charlson Index (0.894, 0.891-0.897). These models accurately predicted the risk of hospital death.

CONCLUSION

The Kaiser Permanente inpatient risk adjustment methodology is a valid model for predicting hospital mortality risk. It performed equally well regardless of methods used to summarize patient comorbidity.

摘要

目的

准确预测医院死亡率对于衡量和比较患者护理至关重要。需要对预测模型进行外部验证,以真正证明其效用。本研究评估了 Kaiser Permanente 住院患者风险调整方法在与推导该方法所用患者人群不同的患者人群中的医院死亡率预测能力。

研究设计和设置

在加拿大渥太华的两家医院进行的回顾性队列研究,纳入 1998 年 1 月至 2002 年 4 月期间所有住院患者(n=188724)。使用队列的随机一半数据来推导住院患者死亡率的统计模型,并对另一半数据进行验证。

结果

住院患者死亡率为 3.3%。使用原始参数估计的模型具有出色的区分能力(c 统计量为 89.4,95%置信区间 [CI]为 0.891-0.898),但校准效果不佳。使用基于数据的参数估计,区分能力非常出色(c 统计量为 0.915,95%CI 为 0.912-0.918),当使用 Elixhauser 指数(0.901,0.898-0.904)或 Charlson 指数(0.894,0.891-0.897)在模型中表示患者合并症时,区分能力仍然如此。这些模型准确预测了医院死亡的风险。

结论

Kaiser Permanente 住院患者风险调整方法是预测医院死亡率风险的有效模型。无论使用何种方法来总结患者的合并症,它的表现都一样出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验