Sharma Shruti, Chakraborty Kausik, Müller Barbara K, Astola Nagore, Tang Yun-Chi, Lamb Don C, Hayer-Hartl Manajit, Hartl F Ulrich
Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
Cell. 2008 Apr 4;133(1):142-53. doi: 10.1016/j.cell.2008.01.048.
The GroEL/GroES chaperonin system mediates protein folding in the bacterial cytosol. Newly synthesized proteins reach GroEL via transfer from upstream chaperones such as DnaK/DnaJ (Hsp70). Here we employed single molecule and ensemble FRET to monitor the conformational transitions of a model substrate as it proceeds along this chaperone pathway. We find that DnaK/DnaJ stabilizes the protein in collapsed states that fold exceedingly slowly. Transfer to GroEL results in unfolding, with a fraction of molecules reaching locally highly expanded conformations. ATP-induced domain movements in GroEL cause transient further unfolding and rapid mobilization of protein segments with moderate hydrophobicity, allowing partial compaction on the GroEL surface. The more hydrophobic regions are released upon subsequent protein encapsulation in the central GroEL cavity by GroES, completing compaction and allowing rapid folding. Segmental chain release and compaction may be important in avoiding misfolding by proteins that fail to fold efficiently through spontaneous hydrophobic collapse.
GroEL/GroES伴侣蛋白系统介导细菌胞质溶胶中的蛋白质折叠。新合成的蛋白质通过从上游伴侣蛋白(如DnaK/DnaJ(热休克蛋白70))转移而到达GroEL。在这里,我们采用单分子和整体荧光共振能量转移(FRET)来监测模型底物沿着这条伴侣蛋白途径进行时的构象转变。我们发现,DnaK/DnaJ使蛋白质稳定在折叠极其缓慢的塌缩状态。转移到GroEL会导致蛋白质展开,一部分分子会达到局部高度伸展的构象。ATP诱导的GroEL结构域运动导致蛋白质片段的短暂进一步展开和具有适度疏水性的蛋白质片段的快速移动,从而允许在GroEL表面进行部分压实。在随后GroES将蛋白质包裹在GroEL中央腔中时,疏水性更强的区域会被释放,完成压实并允许快速折叠。片段链的释放和压实对于避免那些无法通过自发疏水塌缩有效折叠的蛋白质错误折叠可能很重要。