Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Chemical and System Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2118465119. doi: 10.1073/pnas.2118465119. Epub 2022 Apr 29.
The GroEL/ES chaperonin cavity surface charge properties, especially the negative charges, play an important role in its capacity to assist intracavity protein folding. Remarkably, the larger fraction of GroEL/ES negative charges are not conserved among different bacterial species, resulting in a large variation in negative-charge density in the GroEL/ES cavity across prokaryotes. Intriguingly, eukaryotic GroEL/ES homologs have the lowest negative-charge density in the chaperonin cavity. This prompted us to investigate if GroEL’s chaperoning mechanism changed during evolution. Using a model in vivo GroEL/ES substrate, we show that the ability of GroEL/ES to buffer entropic traps in the folding pathway of its substrate was partially dependent upon the negative-charge density inside its cavity. While this activity of GroEL/ES was found to be essential for Escherichia coli, it has been perfected in some organisms and diminished in others. However, irrespective of their charges, all the tested homologs retained their ability to regulate polypeptide chain collapse and remove enthalpic traps from folding pathways. The ability of these GroEL/ES homologs to buffer mutational variations in a model substrate correlated with their negative-charge density. Thus, Hsp60/10 chaperonins in different organisms may have changed to accommodate a different spectrum of mutations on their substrates.
GroEL/ES 分子伴侣腔表面电荷特性,尤其是负电荷,对其协助腔内蛋白质折叠的能力起着重要作用。值得注意的是,GroEL/ES 的负电荷在不同细菌物种之间并没有得到很好的保守,导致在原核生物中 GroEL/ES 腔中的负电荷密度存在很大的差异。有趣的是,真核生物 GroEL/ES 同源物在分子伴侣腔中具有最低的负电荷密度。这促使我们研究 GroEL 的分子伴侣机制是否在进化过程中发生了变化。使用一种体内 GroEL/ES 底物模型,我们表明 GroEL/ES 缓冲其底物折叠途径中熵陷阱的能力部分取决于其腔内部的负电荷密度。虽然发现这种 GroEL/ES 的活性对于大肠杆菌是必需的,但在其他一些生物体中已经得到了完善,而在另一些生物体中则减弱了。然而,无论其电荷如何,所有测试的同源物都保留了调节多肽链折叠和从折叠途径中去除焓陷阱的能力。这些 GroEL/ES 同源物缓冲模型底物中突变的能力与其负电荷密度相关。因此,不同生物体中的 Hsp60/10 分子伴侣可能已经发生了变化,以适应其底物上不同的突变谱。