Suppr超能文献

ESCRT-III CHMP3自身抑制的结构基础

Structural basis for autoinhibition of ESCRT-III CHMP3.

作者信息

Lata Suman, Roessle Manfred, Solomons Julianna, Jamin Marc, Gottlinger Heinrich G, Svergun Dmitri I, Weissenhorn Winfried

机构信息

Unit for Virus Host Cell Interaction, UMR 5233 UJF-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France.

出版信息

J Mol Biol. 2008 May 9;378(4):818-27. doi: 10.1016/j.jmb.2008.03.030. Epub 2008 Mar 20.

Abstract

Endosomal sorting complexes required for transport (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) are selectively recruited to cellular membranes to exert their function in diverse processes, such as multivesicular body biogenesis, enveloped virus budding, and cytokinesis. ESCRT-III is composed of members of the charged multivesicular body protein (CHMP) family--cytosolic proteins that are targeted to membranes via yet unknown signals. Membrane targeting is thought to result in a membrane-associated protein network that presumably acts at a late budding step. Here we provide structural evidence based on small-angle X-ray scattering data that ESCRT-III CHMP3 can adopt two conformations in solution: a closed globular form that most likely represents the cytosolic conformation and an open extended conformation that might represent the activated form of CHMP3. Both the closed and open conformations of CHMP3 interact with AMSH with high affinity. Although the C-terminal region of CHMP3 is required for AMSH interaction, a peptide thereof reveals only weak binding to AMSH, suggesting that other regions of CHMP3 contribute to the high-affinity interaction. Thus, AMSH, including its MIT (microtubule interacting and transport) domain, interacts with ESCRT-III CHMP3 differently from reported Vps4 MIT domain-CHMP protein interactions.

摘要

转运所需的内体分选复合体(ESCRT-0、ESCRT-I、ESCRT-II和ESCRT-III)被选择性地募集到细胞膜上,以在多种过程中发挥其功能,如多泡体生物发生、包膜病毒出芽和胞质分裂。ESCRT-III由带电荷的多泡体蛋白(CHMP)家族的成员组成,这些胞质蛋白通过未知信号靶向细胞膜。膜靶向被认为会导致一个膜相关蛋白网络,该网络可能在出芽后期发挥作用。在这里,我们基于小角X射线散射数据提供了结构证据,表明ESCRT-III CHMP3在溶液中可以采取两种构象:一种封闭的球状形式,很可能代表胞质构象;另一种开放的伸展构象,可能代表CHMP3的活化形式。CHMP3的封闭和开放构象都与AMSH以高亲和力相互作用。虽然CHMP3的C末端区域是与AMSH相互作用所必需的,但其一个肽段与AMSH的结合较弱,这表明CHMP3的其他区域有助于高亲和力相互作用。因此,包括其MIT(微管相互作用和转运)结构域的AMSH与ESCRT-III CHMP3的相互作用不同于报道的Vps4 MIT结构域与CHMP蛋白的相互作用。

相似文献

1
Structural basis for autoinhibition of ESCRT-III CHMP3.
J Mol Biol. 2008 May 9;378(4):818-27. doi: 10.1016/j.jmb.2008.03.030. Epub 2008 Mar 20.
2
Structural basis for ESCRT-III CHMP3 recruitment of AMSH.
Structure. 2011 Aug 10;19(8):1149-59. doi: 10.1016/j.str.2011.05.011.
3
Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding.
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19140-5. doi: 10.1073/pnas.0603788103. Epub 2006 Dec 4.
5
Structural basis for budding by the ESCRT-III factor CHMP3.
Dev Cell. 2006 Jun;10(6):821-30. doi: 10.1016/j.devcel.2006.03.013.
6
AMSH, an ESCRT-III associated enzyme, deubiquitinates cargo on MVB/late endosomes.
Cell Struct Funct. 2007;31(2):159-72. doi: 10.1247/csf.06023. Epub 2006 Dec 12.
7
Interactions of the human LIP5 regulatory protein with endosomal sorting complexes required for transport.
J Biol Chem. 2012 Dec 21;287(52):43910-26. doi: 10.1074/jbc.M112.417899. Epub 2012 Oct 26.
8
Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast.
J Mol Biol. 2016 Jun 5;428(11):2392-2404. doi: 10.1016/j.jmb.2016.04.007. Epub 2016 Apr 10.
9
Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo.
J Biol Chem. 2006 Aug 11;281(32):23083-91. doi: 10.1074/jbc.M513803200. Epub 2006 Jun 7.
10
Structure and function of ESCRT-III.
Biochem Soc Trans. 2009 Feb;37(Pt 1):156-60. doi: 10.1042/BST0370156.

引用本文的文献

1
Asgard archaea reveal the conserved principles of ESCRT-III membrane remodeling.
Sci Adv. 2025 Feb 7;11(6):eads5255. doi: 10.1126/sciadv.ads5255.
2
ESCRT-III: a versatile membrane remodeling machinery and its implications in cellular processes and diseases.
Anim Cells Syst (Seoul). 2024 Jul 25;28(1):367-380. doi: 10.1080/19768354.2024.2380294. eCollection 2024.
3
Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease.
Nucleus. 2024 Dec;15(1):2349085. doi: 10.1080/19491034.2024.2349085. Epub 2024 May 3.
4
An Inducible ESCRT-III Inhibition Tool to Control HIV-1 Budding.
Viruses. 2023 Nov 22;15(12):2289. doi: 10.3390/v15122289.
5
Vps60 initiates alternative ESCRT-III filaments.
J Cell Biol. 2023 Nov 6;222(11). doi: 10.1083/jcb.202206028. Epub 2023 Sep 28.
6
Non-muscle MYH10/myosin IIB recruits ESCRT-III to participate in autophagosome closure to maintain neuronal homeostasis.
Autophagy. 2023 Jul;19(7):2045-2061. doi: 10.1080/15548627.2023.2169309. Epub 2023 Feb 27.
8
Toxoplasma gondii scavenges mammalian host organelles through the usurpation of host ESCRT-III and Vps4A.
J Cell Sci. 2023 Feb 15;136(4). doi: 10.1242/jcs.260159. Epub 2023 Feb 22.
9
Cyanobacterial membrane dynamics in the light of eukaryotic principles.
Biosci Rep. 2023 Feb 27;43(2). doi: 10.1042/BSR20221269.
10
Lgd regulates ESCRT-III complex accumulation at multivesicular endosomes to control intralumenal vesicle formation.
Mol Biol Cell. 2022 Dec 1;33(14):ar144. doi: 10.1091/mbc.E22-08-0342. Epub 2022 Oct 26.

本文引用的文献

1
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
2
ESCRTing proteins in the endocytic pathway.
Trends Biochem Sci. 2007 Dec;32(12):561-73. doi: 10.1016/j.tibs.2007.09.010. Epub 2007 Nov 7.
3
ESCRT-III recognition by VPS4 ATPases.
Nature. 2007 Oct 11;449(7163):740-4. doi: 10.1038/nature06172.
4
Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4.
Nature. 2007 Oct 11;449(7163):735-9. doi: 10.1038/nature06171.
6
Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery.
Science. 2007 Jun 29;316(5833):1908-12. doi: 10.1126/science.1143422. Epub 2007 Jun 7.
7
Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain.
Traffic. 2007 Aug;8(8):1068-79. doi: 10.1111/j.1600-0854.2007.00584.x. Epub 2007 Jun 5.
8
The emerging shape of the ESCRT machinery.
Nat Rev Mol Cell Biol. 2007 May;8(5):355-68. doi: 10.1038/nrm2162.
9
Targeting of AMSH to endosomes is required for epidermal growth factor receptor degradation.
J Biol Chem. 2007 Mar 30;282(13):9805-9812. doi: 10.1074/jbc.M611635200. Epub 2007 Jan 29.
10
Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding.
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19140-5. doi: 10.1073/pnas.0603788103. Epub 2006 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验