Souza Diorge P, Espadas Javier, Chaaban Sami, Moody Edmund R R, Hatano Tomoyuki, Balasubramanian Mohan, Williams Tom A, Roux Aurélien, Baum Buzz
MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland.
Sci Adv. 2025 Feb 7;11(6):eads5255. doi: 10.1126/sciadv.ads5255.
ESCRT-III proteins assemble into composite polymers that undergo stepwise changes in composition and structure to deform membranes across the tree of life. Here, using a phylogenetic analysis, we demonstrate that the two endosomal sorting complex required for transport III (ESCRT-III) proteins present in eukaryote's closest Asgard archaeal relatives are evolutionarily related to the B- and A-type eukaryotic paralogs that initiate and execute membrane remodeling, respectively. We show that Asgard ESCRT-IIIB assembles into parallel arrays on planar membranes to initiate membrane deformation, from where it recruits ESCRT-IIIA to generate composite polymers. Last, we show that Asgard ESCRT-IIIA is able to remodel membranes into tubes as a likely prelude to scission. Together, these data reveal a set of conserved principles governing ESCRT-III-dependent membrane remodeling that first emerged in a two-component ESCRT-III system in archaea.
内体分选转运复合体III(ESCRT-III)蛋白组装成复合聚合物,其组成和结构会逐步发生变化,从而在整个生命树中使膜变形。在此,我们通过系统发育分析表明,真核生物最亲近的阿斯加德古菌亲属中存在的两种转运所需内体分选复合体III(ESCRT-III)蛋白,在进化上分别与启动和执行膜重塑的B型和A型真核生物旁系同源物相关。我们发现,阿斯加德ESCRT-IIIB在平面膜上组装成平行阵列以启动膜变形,并从那里招募ESCRT-IIIA以生成复合聚合物。最后,我们表明阿斯加德ESCRT-IIIA能够将膜重塑成管状,这可能是分裂的前奏。这些数据共同揭示了一组控制ESCRT-III依赖性膜重塑的保守原则,这些原则最初出现在古菌的双组分ESCRT-III系统中。