Suppr超能文献

刚地弓形虫通过篡夺宿主 ESCRT-III 和 Vps4A 来掠夺哺乳动物宿主细胞器。

Toxoplasma gondii scavenges mammalian host organelles through the usurpation of host ESCRT-III and Vps4A.

机构信息

Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.

Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

J Cell Sci. 2023 Feb 15;136(4). doi: 10.1242/jcs.260159. Epub 2023 Feb 22.

Abstract

Intracellular pathogens exploit cellular resources through host cell manipulation. Within its nonfusogenic parasitophorous vacuole (PV), Toxoplasma gondii targets host nutrient-filled organelles and sequesters them into the PV through deep invaginations of the PV membrane (PVM) that ultimately detach from this membrane. Some of these invaginations are generated by an intravacuolar network (IVN) of parasite-derived tubules attached to the PVM. Here, we examined the usurpation of host ESCRT-III and Vps4A by the parasite to create PVM buds and vesicles. CHMP4B associated with the PVM/IVN, and dominant-negative (DN) CHMP4B formed many long PVM invaginations containing CHMP4B filaments. These invaginations were shorter in IVN-deficient parasites, suggesting cooperation between the IVN and ESCRT. In infected cells expressing Vps4A-DN, enlarged intra-PV structures containing host endolysosomes accumulated, reflecting defects in PVM scission. Parasite mutants lacking T. gondii (Tg)GRA14 or TgGRA64, which interact with ESCRT, reduced CHMP4B-DN-induced PVM invaginations and intra-PV host organelles, with greater defects in a double knockout, revealing the exploitation of ESCRT to scavenge host organelles by Toxoplasma.

摘要

细胞内病原体通过操纵宿主细胞来利用细胞资源。在其非融合的寄生质膜空泡(PV)中,刚地弓形虫靶向宿主充满营养的细胞器,并通过 PV 膜(PVM)的深内陷将它们隔离到 PV 中,这些内陷最终与该膜分离。这些内陷中的一些是由附着在 PVM 上的寄生虫衍生小管组成的腔内网络(IVN)产生的。在这里,我们研究了寄生虫对宿主 ESCRT-III 和 Vps4A 的篡夺,以创建 PVM 芽和囊泡。CHMP4B 与 PVM/IVN 相关联,显性失活(DN)CHMP4B 形成了许多含有 CHMP4B 丝的长 PVM 内陷。在缺乏 IVN 的寄生虫中,这些内陷更短,这表明 IVN 和 ESCRT 之间存在合作。在表达 Vps4A-DN 的感染细胞中,含有宿主内溶酶体的 PV 内扩大结构积累,反映出 PVM 分裂的缺陷。缺乏 T. gondii (Tg)GRA14 或 TgGRA64 的寄生虫突变体,这些蛋白与 ESCRT 相互作用,减少了 CHMP4B-DN 诱导的 PVM 内陷和 PV 内的宿主细胞器,在双敲除突变体中缺陷更大,表明刚地弓形虫利用 ESCRT 来清除宿主细胞器。

相似文献

1
Toxoplasma gondii scavenges mammalian host organelles through the usurpation of host ESCRT-III and Vps4A.
J Cell Sci. 2023 Feb 15;136(4). doi: 10.1242/jcs.260159. Epub 2023 Feb 22.
2
Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane.
Subcell Biochem. 2008;47:155-64. doi: 10.1007/978-0-387-78267-6_12.
5
Toxoplasma gondii exploits the host ESCRT machinery for parasite uptake of host cytosolic proteins.
PLoS Pathog. 2021 Dec 13;17(12):e1010138. doi: 10.1371/journal.ppat.1010138. eCollection 2021 Dec.
6
Proximity-Labeling Reveals Novel Host and Parasite Proteins at the Parasitophorous Vacuole Membrane.
mBio. 2021 Dec 21;12(6):e0026021. doi: 10.1128/mBio.00260-21. Epub 2021 Nov 9.
8
Dense Granule Protein GRA64 Interacts with Host Cell ESCRT Proteins during Infection.
mBio. 2022 Aug 30;13(4):e0144222. doi: 10.1128/mbio.01442-22. Epub 2022 Jun 22.
9
The Toxoplasma gondii parasitophorous vacuole membrane: transactions across the border.
J Eukaryot Microbiol. 2007 Jan-Feb;54(1):25-8. doi: 10.1111/j.1550-7408.2006.00230.x.
10
The parasite sequesters diverse Rab host vesicles within an intravacuolar network.
J Cell Biol. 2017 Dec 4;216(12):4235-4254. doi: 10.1083/jcb.201701108. Epub 2017 Oct 25.

引用本文的文献

1
CRISPR-based functional profiling of the Toxoplasma gondii genome during acute murine infection.
Nat Microbiol. 2024 Sep;9(9):2323-2343. doi: 10.1038/s41564-024-01754-2. Epub 2024 Jul 8.
2
Deciphering protein prenylation in endocytic trafficking in .
mBio. 2024 Apr 10;15(4):e0028324. doi: 10.1128/mbio.00283-24. Epub 2024 Feb 26.
3
Genome-wide CRISPR screen identifies genes synthetically lethal with GRA17, a nutrient channel encoding gene in Toxoplasma.
PLoS Pathog. 2023 Jul 27;19(7):e1011543. doi: 10.1371/journal.ppat.1011543. eCollection 2023 Jul.
4
The multifaceted interactions between pathogens and host ESCRT machinery.
PLoS Pathog. 2023 May 4;19(5):e1011344. doi: 10.1371/journal.ppat.1011344. eCollection 2023 May.
5
Dense Granule Protein GRA64 Interacts with Host Cell ESCRT Proteins during Infection.
mBio. 2022 Aug 30;13(4):e0144222. doi: 10.1128/mbio.01442-22. Epub 2022 Jun 22.

本文引用的文献

1
Dense Granule Protein GRA64 Interacts with Host Cell ESCRT Proteins during Infection.
mBio. 2022 Aug 30;13(4):e0144222. doi: 10.1128/mbio.01442-22. Epub 2022 Jun 22.
2
Efficient Cholesterol Transport in Dendritic Cells Defines Optimal Exogenous Antigen Presentation and Toxoplasma gondii Proliferation.
Front Cell Dev Biol. 2022 Mar 4;10:837574. doi: 10.3389/fcell.2022.837574. eCollection 2022.
3
Dense granule biogenesis, secretion, and function in Toxoplasma gondii.
J Eukaryot Microbiol. 2022 Nov;69(6):e12904. doi: 10.1111/jeu.12904. Epub 2022 Apr 1.
5
Toxoplasma gondii exploits the host ESCRT machinery for parasite uptake of host cytosolic proteins.
PLoS Pathog. 2021 Dec 13;17(12):e1010138. doi: 10.1371/journal.ppat.1010138. eCollection 2021 Dec.
6
Proximity-Labeling Reveals Novel Host and Parasite Proteins at the Parasitophorous Vacuole Membrane.
mBio. 2021 Dec 21;12(6):e0026021. doi: 10.1128/mBio.00260-21. Epub 2021 Nov 9.
8
Principles of membrane remodeling by dynamic ESCRT-III polymers.
Trends Cell Biol. 2021 Oct;31(10):856-868. doi: 10.1016/j.tcb.2021.04.005. Epub 2021 May 10.
9
Seizing control: How dense granule effector proteins enable Toxoplasma to take charge.
Mol Microbiol. 2021 Mar;115(3):466-477. doi: 10.1111/mmi.14679. Epub 2021 Feb 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验