Suppr超能文献

人体低频和高频畸变产物耳声发射抑制

Low-frequency and high-frequency distortion product otoacoustic emission suppression in humans.

作者信息

Gorga Michael P, Neely Stephen T, Dierking Darcia M, Kopun Judy, Jolkowski Kristin, Groenenboom Kristin, Tan Hongyang, Stiegemann Bettina

机构信息

Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.

出版信息

J Acoust Soc Am. 2008 Apr;123(4):2172-90. doi: 10.1121/1.2839138.

Abstract

Distortion product otoacoustic emission suppression (quantified as decrements) was measured for f(2)=500 and 4000 Hz, for a range of primary levels (L(2)), suppressor frequencies (f(3)), and suppressor levels (L(3)) in 19 normal-hearing subjects. Slopes of decrement-versus-L(3) functions were similar at both f(2) frequencies, and decreased as f(3) increased. Suppression tuning curves, constructed from decrement functions, were used to estimate (1) suppression for on- and low-frequency suppressors, (2) tip-to-tail differences, (3) Q(ERB), and (4) best frequency. Compression, estimated from the slope of functions relating suppression "threshold" to L(2) for off-frequency suppressors, was similar for 500 and 4000 Hz. Tip-to-tail differences, Q(ERB), and best frequency decreased as L(2) increased for both frequencies. However, tip-to-tail difference (an estimate of cochlear-amplifier gain) was 20 dB greater at 4000 Hz, compared to 500 Hz. Q(ERB) decreased to a greater extent with L(2) when f(2)=4000 Hz, but, on an octave scale, best frequency shifted more with level when f(2)=500 Hz. These data indicate that, at both frequencies, cochlear processing is nonlinear. Response growth and compression are similar at the two frequencies, but gain is greater at 4000 Hz and spread of excitation is greater at 500 Hz.

摘要

在19名听力正常的受试者中,测量了f(2)=500和4000 Hz时,一系列初级水平(L(2))、抑制频率(f(3))和抑制水平(L(3))下的畸变产物耳声发射抑制(以衰减量量化)。在两个f(2)频率下,衰减与L(3)函数的斜率相似,且随f(3)增加而减小。由衰减函数构建的抑制调谐曲线用于估计:(1)对同频和低频抑制器的抑制;(2)首尾差异;(3)Q(ERB);(4)最佳频率。对于500和4000 Hz,根据与失谐抑制器的抑制“阈值”相关的函数斜率估计的压缩情况相似。对于两个频率,首尾差异、Q(ERB)和最佳频率均随L(2)增加而减小。然而,与500 Hz相比,4000 Hz时的首尾差异(耳蜗放大器增益的估计值)大20 dB。当f(2)=4000 Hz时,Q(ERB)随L(2)下降的幅度更大,但在倍频程尺度上,当f(2)=500 Hz时,最佳频率随声级的变化更大。这些数据表明,在两个频率下,耳蜗处理都是非线性的。两个频率下的反应增长和压缩情况相似,但4000 Hz时的增益更大,500 Hz时的兴奋扩散更大。

相似文献

1
Low-frequency and high-frequency distortion product otoacoustic emission suppression in humans.
J Acoust Soc Am. 2008 Apr;123(4):2172-90. doi: 10.1121/1.2839138.
2
Distortion-product otoacoustic emission suppression tuning curves in humans.
J Acoust Soc Am. 2011 Feb;129(2):817-27. doi: 10.1121/1.3531864.
4
Compression estimates using behavioral and otoacoustic emission measures.
Hear Res. 2005 Mar;201(1-2):44-54. doi: 10.1016/j.heares.2004.10.006.
5
Distortion-product otoacoustic emission suppression tuning curves in hearing-impaired humans.
J Acoust Soc Am. 2012 Nov;132(5):3292-304. doi: 10.1121/1.4754525.
6
Temporal aspects of suppression in distortion-product otoacoustic emissions.
J Acoust Soc Am. 2011 May;129(5):3082-9. doi: 10.1121/1.3575553.
8
Two-tone suppression of stimulus frequency otoacoustic emissions.
J Acoust Soc Am. 2008 Mar;123(3):1479-94. doi: 10.1121/1.2828209.
9
Suppression of distortion product otoacoustic emissions and hearing threshold.
J Acoust Soc Am. 2001 Apr;109(4):1496-502. doi: 10.1121/1.1354202.
10
The use of distortion product otoacoustic emission suppression as an estimate of response growth.
J Acoust Soc Am. 2002 Jan;111(1 Pt 1):271-84. doi: 10.1121/1.1426372.

引用本文的文献

1
Distortion-Product Otoacoustic Emission Measured Below 300 Hz in Normal-Hearing Human Subjects.
J Assoc Res Otolaryngol. 2017 Apr;18(2):197-208. doi: 10.1007/s10162-016-0600-x. Epub 2016 Nov 21.
2
Multi-tone suppression of distortion-product otoacoustic emissions in humans.
J Acoust Soc Am. 2016 May;139(5):2299. doi: 10.1121/1.4946989.
3
Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning.
J Assoc Res Otolaryngol. 2013 Dec;14(6):843-62. doi: 10.1007/s10162-013-0412-1. Epub 2013 Sep 7.
5
Distortion-product otoacoustic emission suppression tuning curves in hearing-impaired humans.
J Acoust Soc Am. 2012 Nov;132(5):3292-304. doi: 10.1121/1.4754525.
6
Temporal aspects of suppression in distortion-product otoacoustic emissions.
J Acoust Soc Am. 2011 May;129(5):3082-9. doi: 10.1121/1.3575553.
7
Distortion-product otoacoustic emission suppression tuning curves in humans.
J Acoust Soc Am. 2011 Feb;129(2):817-27. doi: 10.1121/1.3531864.
8
Growth of suppression in humans based on distortion-product otoacoustic emission measurements.
J Acoust Soc Am. 2011 Feb;129(2):801-6. doi: 10.1121/1.3523287.
10
The role of suppression in psychophysical tone-on-tone masking.
J Acoust Soc Am. 2010 Jan;127(1):361-9. doi: 10.1121/1.3257224.

本文引用的文献

1
Otoacoustic estimation of cochlear tuning: validation in the chinchilla.
J Assoc Res Otolaryngol. 2010 Sep;11(3):343-65. doi: 10.1007/s10162-010-0217-4. Epub 2010 May 4.
2
Two-tone suppression of stimulus frequency otoacoustic emissions.
J Acoust Soc Am. 2008 Mar;123(3):1479-94. doi: 10.1121/1.2828209.
3
Low-frequency and high-frequency cochlear nonlinearity in humans.
J Acoust Soc Am. 2007 Sep;122(3):1671. doi: 10.1121/1.2751265.
6
The effect of stimulus-frequency ratio on distortion product otoacoustic emission components.
J Acoust Soc Am. 2005 Jun;117(6):3766-76. doi: 10.1121/1.1903846.
8
Distortion-product otoacoustic emission measured with continuously varying stimulus level.
J Acoust Soc Am. 2005 Mar;117(3 Pt 1):1248-59. doi: 10.1121/1.1853253.
10
Forward masking additivity and auditory compression at low and high frequencies.
J Assoc Res Otolaryngol. 2003 Sep;4(3):405-15. doi: 10.1007/s10162-002-3056-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验