Suppr超能文献

比较人类畸变产物耳声发射和刺激频率耳声发射两音抑制。

Comparison of distortion-product otoacoustic emission and stimulus-frequency otoacoustic emission two-tone suppression in humans.

机构信息

Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.

出版信息

J Acoust Soc Am. 2019 Dec;146(6):4481. doi: 10.1121/1.5139660.

Abstract

Distortion-product otoacoustic emission (DPOAE) and stimulus-frequency otoacoustic emission (SFOAE) are two types of acoustic signals emitted by the inner ear in response to tonal stimuli. The levels of both emission types may be reduced by the inclusion of additional (suppressor) tones with the stimulus. Comparison of two-tone suppression properties across emission type addresses a clinically relevant question of whether these two types of emission provide similar information about cochlear status. The purpose of this study was to compare DPOAE suppression to SFOAE suppression from the same ear in a group of participants with normal hearing. Probe frequency was approximately 1000 Hz, and the suppressor frequency varied from -1.5 to 0.5 octaves relative to the probe frequency. DPOAE and SFOAE suppression were compared in terms of (1) suppression growth rate (SGR), (2) superimposed suppression tuning curves (STCs), and (3) STC-derived metrics, such as high-frequency slope, cochlear amplifier gain, and Q (ERB, equivalent rectangular bandwidth). Below the probe frequency, the SGR was slightly greater than one for SFOAEs and slightly less than two for DPOAEs. There were no differences in STC metrics across emission types. These observations may provide useful constraints on physiology-based models of otoacoustic emission suppression.

摘要

畸变产物耳声发射(DPOAE)和刺激频率耳声发射(SFOAE)是内耳对内耳刺激的两种声学信号。在刺激中加入附加(抑制)音调会降低这两种发射类型的水平。通过比较两种抑制类型的抑制特性,可以解决一个与临床相关的问题,即这两种发射类型是否提供了关于耳蜗状态的相似信息。本研究的目的是比较同一组正常听力参与者的 DPOAE 抑制与 SFOAE 抑制。探针频率约为 1000Hz,抑制器频率相对于探针频率变化范围为-1.5 至 0.5 个倍频程。从以下几个方面比较了 DPOAE 和 SFOAE 的抑制情况:(1)抑制增长率(SGR);(2)叠加抑制调谐曲线(STC);(3)由 STC 衍生的指标,如高频斜率、耳蜗放大器增益和 Q(ERB,等效矩形带宽)。在探针频率以下,SFOAE 的 SGR 略大于 1,而 DPOAE 的 SGR 略小于 2。两种发射类型的 STC 指标没有差异。这些观察结果可能为基于生理的耳声发射抑制模型提供有用的限制。

相似文献

2
Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
Neurosci Lett. 2014 Jan 24;559:132-5. doi: 10.1016/j.neulet.2013.11.059. Epub 2013 Dec 10.
3
Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners.
Int J Audiol. 2015 Feb;54(2):96-105. doi: 10.3109/14992027.2014.941074. Epub 2014 Oct 7.
5
Suppression of stimulus frequency otoacoustic emissions.
J Acoust Soc Am. 1993 Feb;93(2):920-39. doi: 10.1121/1.405453.
6
Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging.
J Assoc Res Otolaryngol. 2018 Oct;19(5):493-510. doi: 10.1007/s10162-018-0680-x. Epub 2018 Jul 2.
7
Distortion product otoacoustic emission suppression tuning curves in human adults and neonates.
Hear Res. 1996 Sep 1;98(1-2):38-53. doi: 10.1016/0378-5955(96)00056-1.
8
Suppression of distortion product otoacoustic emissions and hearing threshold.
J Acoust Soc Am. 2001 Apr;109(4):1496-502. doi: 10.1121/1.1354202.
9
Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils.
J Acoust Soc Am. 2000 May;107(5 Pt 1):2586-602. doi: 10.1121/1.428646.
10
Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns.
Trends Hear. 2019 Jan-Dec;23:2331216519889226. doi: 10.1177/2331216519889226.

引用本文的文献

1
Cochlear Tuning in Early Aging Estimated with Three Methods.
Trends Hear. 2025 Jan-Dec;29:23312165251364675. doi: 10.1177/23312165251364675. Epub 2025 Jul 29.
2
The Elusive Cochlear Filter: Wave Origin of Cochlear Cross-Frequency Masking.
J Assoc Res Otolaryngol. 2021 Dec;22(6):623-640. doi: 10.1007/s10162-021-00814-2. Epub 2021 Oct 22.

本文引用的文献

2
Multi-tone suppression of distortion-product otoacoustic emissions in humans.
J Acoust Soc Am. 2016 May;139(5):2299. doi: 10.1121/1.4946989.
3
Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning.
J Assoc Res Otolaryngol. 2013 Dec;14(6):843-62. doi: 10.1007/s10162-013-0412-1. Epub 2013 Sep 7.
4
Signal-processing strategy for restoration of cross-channel suppression in hearing-impaired listeners.
IEEE Trans Biomed Eng. 2014 Jan;61(1):64-75. doi: 10.1109/TBME.2013.2276351. Epub 2013 Aug 2.
5
Inverse solution of ear-canal area function from reflectance.
J Acoust Soc Am. 2011 Dec;130(6):3873-81. doi: 10.1121/1.3654019.
6
Distortion-product otoacoustic emission suppression tuning curves in humans.
J Acoust Soc Am. 2011 Feb;129(2):817-27. doi: 10.1121/1.3531864.
7
Growth of suppression in humans based on distortion-product otoacoustic emission measurements.
J Acoust Soc Am. 2011 Feb;129(2):801-6. doi: 10.1121/1.3523287.
8
Evidence for basal distortion-product otoacoustic emission components.
J Acoust Soc Am. 2010 May;127(5):2955-72. doi: 10.1121/1.3353121.
9
Otoacoustic estimation of cochlear tuning: validation in the chinchilla.
J Assoc Res Otolaryngol. 2010 Sep;11(3):343-65. doi: 10.1007/s10162-010-0217-4. Epub 2010 May 4.
10
Two-tone suppression of stimulus frequency otoacoustic emissions.
J Acoust Soc Am. 2008 Mar;123(3):1479-94. doi: 10.1121/1.2828209.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验