Suppr超能文献

刺激频率耳声发射抑制调谐在人类中的研究:与行为调谐的比较。

Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning.

机构信息

Department of Communication Sciences and Disorders, Northwestern University, School of Communication, 2240 Campus Drive, Evanston, IL, 602080-2952, USA,

出版信息

J Assoc Res Otolaryngol. 2013 Dec;14(6):843-62. doi: 10.1007/s10162-013-0412-1. Epub 2013 Sep 7.

Abstract

As shown by the work of Kemp and Chum in 1980, stimulus-frequency otoacoustic emission suppression tuning curves (SFOAE STCs) have potential to objectively estimate behaviorally measured tuning curves. To date, this potential has not been tested. This study aims to do so by comparing SFOAE STCs and behavioral measures of tuning (simultaneous masking psychophysical tuning curves, PTCs) in 10 normal-hearing listeners for frequency ranges centered around 1,000 and 4,000 Hz at low probe levels. Additionally, SFOAE STCs were collected for varying conditions (probe level and suppression criterion) to identify the optimal parameters for comparison with behavioral data and to evaluate how these conditions affect the features of SFOAE STCs. SFOAE STCs qualitatively resembled PTCs: they demonstrated band-pass characteristics and asymmetric shapes with steeper high-frequency sides than low, but unlike PTCs they were consistently tuned to frequencies just above the probe frequency. When averaged across subjects the shapes of SFOAE STCs and PTCs showed agreement for most recording conditions, suggesting that PTCs are predominantly shaped by the frequency-selective filtering and suppressive effects of the cochlea. Individual SFOAE STCs often demonstrated irregular shapes (e.g., "double-tips"), particularly for the 1,000-Hz probe, which were not observed for the same subject's PTC. These results show the limited utility of SFOAE STCs to assess tuning in an individual. The irregularly shaped SFOAE STCs may be attributed to contributions from SFOAE sources distributed over a region of the basilar membrane extending beyond the probe characteristic place, as suggested by a repeatable pattern of SFOAE residual phase shifts observed in individual data.

摘要

如 Kemp 和 Chum 在 1980 年的工作所示,刺激频率耳声发射抑制调谐曲线(SFOAE STCs)有可能客观地估计行为测量的调谐曲线。迄今为止,这种潜力尚未得到检验。本研究旨在通过比较 10 名正常听力受试者在低频探测水平下,以 1000Hz 和 4000Hz 为中心的频率范围内的 SFOAE STCs 和行为测量的调谐(同时掩蔽心理物理调谐曲线,PTCs)来实现这一目标。此外,还收集了不同条件(探测水平和抑制标准)下的 SFOAE STCs,以确定与行为数据进行比较的最佳参数,并评估这些条件如何影响 SFOAE STCs 的特征。SFOAE STCs 在定性上与 PTCs 相似:它们表现出带通特性和不对称形状,高频侧比低频侧陡峭,但与 PTCs 不同的是,它们始终调谐到探测频率以上的频率。当对受试者进行平均处理时,SFOAE STCs 和 PTCs 的形状在大多数记录条件下表现出一致性,这表明 PTCs 主要由耳蜗的频率选择性滤波和抑制作用形成。单个 SFOAE STCs 通常表现出不规则的形状(例如,“双尖”),特别是对于 1000Hz 的探测,而同一受试者的 PTC 则没有观察到这种形状。这些结果表明,SFOAE STCs 在评估个体的调谐方面的应用有限。不规则形状的 SFOAE STCs 可能归因于分布在基底膜上超出探测特征位置的区域的 SFOAE 源的贡献,这正如个体数据中观察到的可重复的 SFOAE 残余相位偏移模式所表明的那样。

相似文献

1
Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning.
J Assoc Res Otolaryngol. 2013 Dec;14(6):843-62. doi: 10.1007/s10162-013-0412-1. Epub 2013 Sep 7.
2
Exploration of stimulus-frequency otoacoustic emission suppression tuning in hearing-impaired listeners.
Int J Audiol. 2015 Feb;54(2):96-105. doi: 10.3109/14992027.2014.941074. Epub 2014 Oct 7.
4
An objective assessment method for frequency selectivity of the human auditory system.
Biomed Eng Online. 2014 Dec 18;13:171. doi: 10.1186/1475-925X-13-171.
5
Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas.
J Assoc Res Otolaryngol. 2014 Dec;15(6):883-96. doi: 10.1007/s10162-014-0487-3. Epub 2014 Sep 18.
6
Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation.
J Assoc Res Otolaryngol. 2015 Jun;16(3):317-29. doi: 10.1007/s10162-015-0513-0. Epub 2015 Mar 27.
8
Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
Neurosci Lett. 2014 Jan 24;559:132-5. doi: 10.1016/j.neulet.2013.11.059. Epub 2013 Dec 10.
9
Musical experience sharpens human cochlear tuning.
Hear Res. 2016 May;335:40-46. doi: 10.1016/j.heares.2016.02.012. Epub 2016 Feb 18.
10
Relationship Between Behavioral and Stimulus Frequency Otoacoustic Emissions Delay-Based Tuning Estimates.
J Speech Lang Hear Res. 2020 Jun 22;63(6):1958-1968. doi: 10.1044/2020_JSLHR-19-00386. Epub 2020 May 28.

引用本文的文献

1
Cochlear Tuning in Early Aging Estimated with Three Methods.
Trends Hear. 2025 Jan-Dec;29:23312165251364675. doi: 10.1177/23312165251364675. Epub 2025 Jul 29.
2
Objective Assessment System for Hearing Prediction Based on Stimulus-Frequency Otoacoustic Emissions.
Trends Hear. 2021 Jan-Dec;25:23312165211059628. doi: 10.1177/23312165211059628.
3
The Elusive Cochlear Filter: Wave Origin of Cochlear Cross-Frequency Masking.
J Assoc Res Otolaryngol. 2021 Dec;22(6):623-640. doi: 10.1007/s10162-021-00814-2. Epub 2021 Oct 22.
4
Cochlear tuning estimates from level ratio functions of distortion product otoacoustic emissions.
Int J Audiol. 2021 Nov;60(11):890-899. doi: 10.1080/14992027.2021.1886352. Epub 2021 Feb 22.
5
Relationship Between Behavioral and Stimulus Frequency Otoacoustic Emissions Delay-Based Tuning Estimates.
J Speech Lang Hear Res. 2020 Jun 22;63(6):1958-1968. doi: 10.1044/2020_JSLHR-19-00386. Epub 2020 May 28.
6
The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions.
Biophys J. 2020 Mar 10;118(5):1183-1195. doi: 10.1016/j.bpj.2019.12.031. Epub 2020 Jan 3.
8
No Effect of Musical Training on Frequency Selectivity Estimated Using Three Methods.
Trends Hear. 2019 Jan-Dec;23:2331216519841980. doi: 10.1177/2331216519841980.
9
Cochlear Mechanisms and Otoacoustic Emission Test Performance.
Ear Hear. 2019 Mar/Apr;40(2):401-417. doi: 10.1097/AUD.0000000000000625.
10
Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears.
J Assoc Res Otolaryngol. 2017 Feb;18(1):1-24. doi: 10.1007/s10162-016-0579-3. Epub 2016 Aug 18.

本文引用的文献

2
Distortion-product otoacoustic emission suppression tuning curves in hearing-impaired humans.
J Acoust Soc Am. 2012 Nov;132(5):3292-304. doi: 10.1121/1.4754525.
3
Obtaining reliable phase-gradient delays from otoacoustic emission data.
J Acoust Soc Am. 2012 Aug;132(2):927-43. doi: 10.1121/1.4730916.
4
Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration.
Ear Hear. 2012 May-Jun;33(3):315-29. doi: 10.1097/AUD.0b013e31823d7917.
5
Time-efficient measures of auditory frequency selectivity.
Int J Audiol. 2012 Apr;51(4):317-25. doi: 10.3109/14992027.2011.625982. Epub 2011 Nov 22.
6
Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17516-20. doi: 10.1073/pnas.1105867108. Epub 2011 Oct 10.
7
Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions.
J Acoust Soc Am. 2011 Jun;129(6):3797-807. doi: 10.1121/1.3575596.
8
Distortion-product otoacoustic emission suppression tuning curves in humans.
J Acoust Soc Am. 2011 Feb;129(2):817-27. doi: 10.1121/1.3531864.
9
Implementation of a fast method for measuring psychophysical tuning curves.
Int J Audiol. 2011 Apr;50(4):237-42. doi: 10.3109/14992027.2010.550636. Epub 2011 Feb 7.
10
Evidence for basal distortion-product otoacoustic emission components.
J Acoust Soc Am. 2010 May;127(5):2955-72. doi: 10.1121/1.3353121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验