Suppr超能文献

利用动态二次离子质谱中的原子重组进行大分子共定位的方法。

Method for macromolecular colocalization using atomic recombination in dynamic SIMS.

作者信息

Legent G, Delaune A, Norris V, Delcorte A, Gibouin D, Lefebvre F, Misevic G, Thellier M, Ripoll C

机构信息

Laboratoire Assemblages moléculaires: modélisation, et imagerie SIMS, Faculté des Sciences de l'Université de Rouen, 76821 Mont Saint Aignan Cedex, France.

出版信息

J Phys Chem B. 2008 May 1;112(17):5534-46. doi: 10.1021/jp7100489. Epub 2008 Apr 10.

Abstract

Localizing two or more components of assemblies in biological systems requires both continued development of fluorescence techniques and invention of entirely new techniques. Candidates for the latter include dynamic secondary ion mass spectrometry (D-SIMS). The latest generation of D-SIMS, the Cameca NanoSIMS 50, permits the localization of specific, isotopically labeled molecules and macromolecules in sections of biological material with a resolution in the tens of nanometers and with a sensitivity approaching in principle that of a single protein. Here we use two different systems, crystals of glycine and mixtures of proteins, to show that the formation of recombinant CN secondary ions under Cs bombardment can be exploited to create a new colocalization technique. We show experimentally that the formation of the recombinant (13)C(15)N secondary ion between (13)C- and (15)N-labeled macromolecules is indeed an indicator of the distance between the interacting macromolecules and on their shape. We build up a convolution model of the mixing-recombination process in D-SIMS that allows quantitative interpretations of the distance-dependent formation of the recombinant CN. Our results show that macromolecules can be colocalized if they are within 2 nm of one another. We discuss the potential advantages of this new technique for biological applications.

摘要

在生物系统中对组件的两个或更多组件进行定位,既需要荧光技术的持续发展,也需要全新技术的发明。后者的候选技术包括动态二次离子质谱(D-SIMS)。最新一代的D-SIMS,即Cameca NanoSIMS 50,能够在生物材料切片中对特定的、同位素标记的分子和大分子进行定位,分辨率可达几十纳米,灵敏度原则上接近单个蛋白质的灵敏度。在这里,我们使用两种不同的系统,甘氨酸晶体和蛋白质混合物,来表明在铯轰击下重组CN二次离子的形成可被用于创建一种新的共定位技术。我们通过实验表明,在13C和15N标记的大分子之间重组(13)C(15)N二次离子的形成确实是相互作用大分子之间距离及其形状的一个指标。我们建立了一个D-SIMS中混合-重组过程的卷积模型,该模型允许对重组CN的距离依赖性形成进行定量解释。我们的结果表明,如果大分子彼此距离在2纳米以内,它们就可以共定位。我们讨论了这种新技术在生物学应用中的潜在优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验