Laboratoire MERCI EA3829, équipe AMMIS, Faculté des Sciences de l'Université de Rouen, Mont Saint Aignan, France.
PLoS One. 2013;8(2):e56559. doi: 10.1371/journal.pone.0056559. Epub 2013 Feb 19.
Imaging single proteins within cells is challenging if the possibility of artefacts due to tagging or to recognition by antibodies is to be avoided. It is generally believed that the biological properties of proteins remain unaltered when (14)N isotopes are replaced with (15)N. (15)N-enriched proteins can be localised by dynamic Secondary Ion Mass Spectrometry (D-SIMS). We describe here a novel imaging analysis algorithm to detect a few (15)N-enriched proteins--and even a single protein--within a cell using D-SIMS. The algorithm distinguishes statistically between a low local increase in (15)N isotopic fraction due to an enriched protein and a stochastic increase due to the background. To determine the number of enriched proteins responsible for the increase in the isotopic fraction, we use sequential D-SIMS images in which we compare the measured isotopic fractions to those expected if 1, 2 or more enriched proteins are present. The number of enriched proteins is the one that gives the best fit between the measured and the expected values. We used our method to localise (15)N-enriched thymine DNA glycosylase (TDG) and retinoid X receptor α (RXRα) proteins delivered to COS-7 cells. We show that both a single TDG and a single RXRα can be detected. After 4 h incubation, both proteins were found mainly in the nucleus; RXRα as a monomer or dimer and TDG only as a monomer. After 7 h, RXRα was found in the nucleus as a monomer, dimer or tetramer, whilst TDG was no longer in the nucleus and instead formed clusters in the cytoplasm. After 24 h, RXRα formed clusters in the cytoplasm, and TDG was no longer detectable. In conclusion, single unmodified proteins in cells can be counted and localised with 50 nm resolution by combining D-SIMS with our method of analysis.
如果要避免因标记或抗体识别而产生人为假象的可能性,那么在细胞内对单个蛋白质进行成像就极具挑战性。一般认为,当(14)N 同位素被(15)N 取代时,蛋白质的生物学特性保持不变。(15)N 富集的蛋白质可以通过动态二次离子质谱(D-SIMS)进行定位。我们在此描述了一种新的成像分析算法,该算法可通过 D-SIMS 在细胞内检测少数(15)N 富集的蛋白质,甚至是单个蛋白质。该算法在统计学上区分了由于富含蛋白质而导致的(15)N 同位素分数的局部低增加和由于背景而导致的随机增加。为了确定导致同位素分数增加的富集蛋白质的数量,我们使用顺序 D-SIMS 图像,在这些图像中,我们将测量的同位素分数与存在 1、2 个或更多个富集蛋白质时的预期同位素分数进行比较。给出测量值与预期值之间最佳拟合的富集蛋白质的数量就是要确定的数量。我们使用该方法对传代到 COS-7 细胞中的(15)N 富集胸腺嘧啶 DNA 糖基化酶(TDG)和维甲酸 X 受体α(RXRα)蛋白质进行定位。我们证明,单个 TDG 和单个 RXRα都可以被检测到。孵育 4 小时后,两种蛋白质主要位于细胞核内;RXRα 以单体或二聚体形式存在,而 TDG 仅以单体形式存在。孵育 7 小时后,RXRα 以单体、二聚体或四聚体的形式存在于细胞核内,而 TDG 不再位于细胞核内,而是在细胞质中形成聚集体。孵育 24 小时后,RXRα 在细胞质中形成聚集体,TDG 不再可检测到。总之,通过将 D-SIMS 与我们的分析方法相结合,可以以 50nm 的分辨率对细胞内的单个未经修饰的蛋白质进行计数和定位。