Suppr超能文献

非共价细胞表面工程:将生物活性合成糖聚合物掺入细胞膜。

Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes.

作者信息

Rabuka David, Forstner Martin B, Groves Jay T, Bertozzi Carolyn R

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, USA.

出版信息

J Am Chem Soc. 2008 May 7;130(18):5947-53. doi: 10.1021/ja710644g. Epub 2008 Apr 11.

Abstract

The controlled addition of structurally defined components to live cell membranes can facilitate the molecular level analysis of cell surface phenomena. Here we demonstrate that cell surfaces can be engineered to display synthetic bioactive polymers at defined densities by exogenous membrane insertion. The polymers were designed to mimic native cell-surface mucin glycoproteins, which are defined by their dense glycosylation patterns and rod-like structures. End-functionalization with a hydrophobic anchor permitted incorporation into the membranes of live cultured cells. We probed the dynamic behavior of cell-bound glycopolymers bearing various hydrophobic anchors and glycan structures using fluorescence correlation spectroscopy (FCS). Their diffusion properties mirrored those of many natural membrane-associated biomolecules. Furthermore, the membrane-bound glycopolymers were internalized into early endosomes similarly to endogenous membrane components and were capable of specific interactions with protein receptors. This system provides a platform to study cell-surface phenomena with a degree of chemical control that cannot be achieved using conventional biological tools.

摘要

向活细胞膜中可控地添加结构明确的成分有助于在分子水平上分析细胞表面现象。在此,我们证明通过外源膜插入可对细胞表面进行工程改造,以特定密度展示合成生物活性聚合物。这些聚合物被设计成模仿天然细胞表面粘蛋白糖蛋白,其由密集的糖基化模式和棒状结构所定义。用疏水锚进行末端功能化可使其掺入活培养细胞的膜中。我们使用荧光相关光谱法(FCS)探测了带有各种疏水锚和聚糖结构的细胞结合糖聚合物的动态行为。它们的扩散特性反映了许多天然膜相关生物分子的扩散特性。此外,膜结合糖聚合物与内源性膜成分类似地被内化到早期内体中,并且能够与蛋白质受体发生特异性相互作用。该系统提供了一个平台,可在一定程度的化学控制下研究细胞表面现象,这是使用传统生物学工具无法实现的。

相似文献

1
Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes.
J Am Chem Soc. 2008 May 7;130(18):5947-53. doi: 10.1021/ja710644g. Epub 2008 Apr 11.
2
Glycopolymer probes of signal transduction.
Chem Soc Rev. 2013 May 21;42(10):4476-91. doi: 10.1039/c3cs60097a. Epub 2013 Apr 18.
4
Control of the molecular orientation of membrane-anchored biomimetic glycopolymers.
J Am Chem Soc. 2009 Jul 29;131(29):10263-8. doi: 10.1021/ja903114g.
5
A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20332-7. doi: 10.1073/pnas.0710139104. Epub 2007 Dec 12.
8
Cholesterol-dependent retention of GPI-anchored proteins in endosomes.
EMBO J. 1998 Aug 17;17(16):4626-38. doi: 10.1093/emboj/17.16.4626.
9
Variant GPI structure in relation to membrane-associated functions of a murine folate receptor.
Biochemistry. 1996 Dec 17;35(50):16305-12. doi: 10.1021/bi961098q.

引用本文的文献

2
Natural biomolecules for cell-interface engineering.
Chem Sci. 2025 Jan 28;16(7):3019-3044. doi: 10.1039/d4sc08422e. eCollection 2025 Feb 12.
3
Synthetic Lipid Biology.
Chem Rev. 2025 Feb 26;125(4):2502-2560. doi: 10.1021/acs.chemrev.4c00761. Epub 2025 Jan 13.
4
The Glycocalyx: The Importance of Sugar Coating the Blood-Brain Barrier.
Int J Mol Sci. 2024 Aug 1;25(15):8404. doi: 10.3390/ijms25158404.
5
Conformal encapsulation of mammalian stem cells using modified hyaluronic acid.
J Mater Chem B. 2024 Jul 24;12(29):7122-7134. doi: 10.1039/d4tb00223g.
7
Synthesis and biomedical applications of mucin mimic materials.
Adv Drug Deliv Rev. 2022 Dec;191:114540. doi: 10.1016/j.addr.2022.114540. Epub 2022 Oct 10.
8
Mucus-Inspired Dynamic Hydrogels: Synthesis and Future Perspectives.
J Am Chem Soc. 2022 Nov 9;144(44):20137-20152. doi: 10.1021/jacs.1c13547. Epub 2022 Sep 8.
9
Multivalent Cucurbituril Dendrons for Cell Membrane Engineering with Supramolecular Receptors.
Bioconjug Chem. 2022 Dec 21;33(12):2262-2268. doi: 10.1021/acs.bioconjchem.2c00242. Epub 2022 Jul 8.
10
Excavating proteoglycan structure-function relationships: modern approaches to capture the interactions of ancient biomolecules.
Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C415-C422. doi: 10.1152/ajpcell.00222.2022. Epub 2022 Jun 27.

本文引用的文献

1
A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20332-7. doi: 10.1073/pnas.0710139104. Epub 2007 Dec 12.
2
Synthetic analogues of glycosylphosphatidylinositol-anchored proteins and their behavior in supported lipid bilayers.
J Am Chem Soc. 2007 Sep 19;129(37):11543-50. doi: 10.1021/ja073271j. Epub 2007 Aug 23.
3
Synthetic glycolipid modification of red blood cell membranes.
Transfusion. 2007 May;47(5):876-82. doi: 10.1111/j.1537-2995.2007.01204.x.
4
Hierarchical assembly of model cell surfaces: synthesis of mucin mimetic polymers and their display on supported bilayers.
J Am Chem Soc. 2007 May 2;129(17):5462-71. doi: 10.1021/ja067819i. Epub 2007 Apr 11.
5
Metabolic oligosaccharide engineering: perspectives, applications, and future directions.
Mol Biosyst. 2007 Mar;3(3):187-94. doi: 10.1039/b614939c. Epub 2007 Jan 12.
6
Lipid lateral mobility and membrane phase structure modulation by protein binding.
J Am Chem Soc. 2006 Nov 29;128(47):15221-7. doi: 10.1021/ja064093h.
9
Microtubule motors at the intersection of trafficking and transport.
Trends Cell Biol. 2006 Oct;16(10):530-7. doi: 10.1016/j.tcb.2006.08.002. Epub 2006 Aug 30.
10
Biochemical and structural analysis of Helix pomatia agglutinin. A hexameric lectin with a novel fold.
J Biol Chem. 2006 Jul 21;281(29):20171-80. doi: 10.1074/jbc.M603452200. Epub 2006 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验