Suppr超能文献

合成脂质生物学

Synthetic Lipid Biology.

作者信息

Chen Po-Hsun Brian, Li Xiang-Ling, Baskin Jeremy M

机构信息

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States.

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.

出版信息

Chem Rev. 2025 Feb 26;125(4):2502-2560. doi: 10.1021/acs.chemrev.4c00761. Epub 2025 Jan 13.

Abstract

Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.

摘要

细胞含有数千种不同的脂质。它们快速且冗余的代谢、动态运动以及与其他生物分子的诸多相互作用,理所当然地使脂质成为一类难以理解的分子。此外,作为细胞的疏水代谢产物,脂质组装成超分子结构——最常见的是双层膜或细胞膜——并从中执行无数生物学功能。受这种令人望而生畏的复杂性驱使,各学科的研究人员正在为生物脂质和膜看似混乱的局面带来秩序。在此,我们将这些努力形式化为“合成脂质生物学”。受合成生物学核心思想的启发,即我们理解和构建生物系统的能力紧密相连,我们整合了众多领域的研究和方法,以创建、操纵和分析脂质及生物膜。这些包括使用化学和化学酶法从头合成脂质和膜、利用光遗传学和蛋白质工程编辑预先存在的膜、使用生物正交化学检测脂质代谢和转运,以及探究脂质 - 蛋白质相互作用和膜生物物理性质。由此呈现出一个新兴领域的图景,化学家、生物学家、物理学家和工程师在其中紧密合作——就像脂质本身一样——以更清晰地描述脂质和膜的性质、行为及功能。

相似文献

1
Synthetic Lipid Biology.
Chem Rev. 2025 Feb 26;125(4):2502-2560. doi: 10.1021/acs.chemrev.4c00761. Epub 2025 Jan 13.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Fluorescent Probes for Lipid Membranes: From the Cell Surface to Organelles.
Acc Chem Res. 2023 Jan 3;56(1):1-12. doi: 10.1021/acs.accounts.2c00586. Epub 2022 Dec 19.
5
Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking.
Acc Chem Res. 2011 Sep 20;44(9):699-708. doi: 10.1021/ar200063v. Epub 2011 Jun 15.
6
Imaging and Editing the Phospholipidome.
Acc Chem Res. 2022 Nov 1;55(21):3088-3098. doi: 10.1021/acs.accounts.2c00510. Epub 2022 Oct 24.
7
Engineering the bilayer: Emerging genetic tool kits for mechanistic lipid biology.
Curr Opin Chem Biol. 2021 Dec;65:66-73. doi: 10.1016/j.cbpa.2021.05.013. Epub 2021 Jul 1.
8
Lipid mimetics: A versatile toolbox for lipid biology and beyond.
Curr Opin Chem Biol. 2022 Dec;71:102209. doi: 10.1016/j.cbpa.2022.102209. Epub 2022 Sep 16.
9
Greasing the Wheels of Lipid Biology with Chemical Tools.
Trends Biochem Sci. 2018 Dec;43(12):970-983. doi: 10.1016/j.tibs.2018.09.011. Epub 2018 Oct 26.
10
In situ synthesis of artificial lipids.
Curr Opin Chem Biol. 2022 Dec;71:102210. doi: 10.1016/j.cbpa.2022.102210. Epub 2022 Sep 15.

引用本文的文献

1
Designing New Natural-Mimetic Phosphatidic Acid: A Versatile and Innovative Synthetic Strategy for Glycerophospholipid Research.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202510412. doi: 10.1002/anie.202510412. Epub 2025 Jul 25.
2
Positioning Formation and Controllable Fabrication of Lipid Vesicles Using Patterned Substrates.
ACS Omega. 2025 May 15;10(20):20794-20800. doi: 10.1021/acsomega.5c01927. eCollection 2025 May 27.

本文引用的文献

2
PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes.
Cell. 2024 Nov 27;187(24):6820-6834.e24. doi: 10.1016/j.cell.2024.09.036. Epub 2024 Oct 17.
3
Profiling sorghum-microbe interactions with a specialized photoaffinity probe identifies key sorgoleone binders in .
Appl Environ Microbiol. 2024 Oct 23;90(10):e0102624. doi: 10.1128/aem.01026-24. Epub 2024 Sep 9.
4
Imaging Interorganelle Phospholipid Transport by Extended Synaptotagmins Using Bioorthogonally Tagged Lipids.
ACS Chem Biol. 2024 Aug 16;19(8):1683-1694. doi: 10.1021/acschembio.4c00345. Epub 2024 Jul 18.
5
Gel-assisted mass spectrometry imaging enables sub-micrometer spatial lipidomics.
Nat Commun. 2024 Jun 12;15(1):5036. doi: 10.1038/s41467-024-49384-w.
6
Trifunctional fatty acid derivatives: the impact of diazirine placement.
Chem Commun (Camb). 2024 Jun 25;60(52):6651-6654. doi: 10.1039/d4cc00974f.
7
Probing Glycerolipid Metabolism using a Caged Clickable Glycerol-3-Phosphate Probe.
Chembiochem. 2024 Sep 16;25(18):e202300853. doi: 10.1002/cbic.202300853. Epub 2024 Jun 18.
8
Single-Cell Untargeted Lipidomics Using Liquid Chromatography and Data-Dependent Acquisition after Live Cell Selection.
Anal Chem. 2024 May 7;96(18):6922-6929. doi: 10.1021/acs.analchem.3c05677. Epub 2024 Apr 23.
9
Enzyme engineering for functional lipids synthesis: recent advance and perspective.
Bioresour Bioprocess. 2024 Jan 2;11(1):1. doi: 10.1186/s40643-023-00723-7.
10
Cyano-Hydrol green derivatives: Expanding the 9-cyanopyronin-based resonance Raman vibrational palette.
Bioorg Med Chem Lett. 2024 Jul 1;106:129757. doi: 10.1016/j.bmcl.2024.129757. Epub 2024 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验