Mueller-Planitz Felix, Herschlag Daniel
Department of Biochemistry, School of Medicine, Stanford University, Stanford, California 94305, USA.
J Biol Chem. 2008 Jun 20;283(25):17463-76. doi: 10.1074/jbc.M710014200. Epub 2008 Apr 10.
DNA topoisomerase II is a molecular machine that couples ATP hydrolysis to the transport of one DNA segment through a transient break in another segment. To learn about the energetic connectivity that underlies this coupling, we investigated how the ATPase domains exert control over DNA cleavage. We dissected the DNA cleavage reaction by measuring rate and equilibrium constants for the individual reaction steps utilizing defined DNA duplexes in the presence and absence of the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMPPNP). Our results revealed the existence of two enzyme conformations whose relative abundance is sensitive to the presence of nucleotides. The predominant species in the absence of nucleotides binds DNA at a diffusion limited rate but cannot efficiently cleave DNA. In the presence of AMPPNP, most of the enzyme is converted to a state in which DNA binding and release is extremely slow but which allows DNA cleavage. A minimal kinetic and thermodynamic framework is established that accounts for the cooperativity of cleavage of the two DNA strands in the presence and absence of bound AMPPNP and includes conformational steps revealed in the kinetic studies. The model unifies available kinetic, thermodynamic, and structural data to provide a description for the reaction in terms of the order and rate of individual reaction steps and the physical nature of the species on the reaction path. Furthermore, this reaction framework provides a foundation for a future in-depth analysis of energy transduction by topoisomerase II, for guiding and interpreting future structural studies, and for analyzing the mechanism of drugs that convert topoisomerase into a cellular poison.
DNA拓扑异构酶II是一种分子机器,它将ATP水解与一个DNA片段通过另一个片段中的瞬时断裂进行的转运偶联起来。为了了解这种偶联背后的能量连接性,我们研究了ATP酶结构域如何控制DNA切割。我们通过测量在存在和不存在不可水解的ATP类似物5'-腺苷-β,γ-亚氨基二磷酸(AMPPNP)的情况下,利用定义的DNA双链体对各个反应步骤的速率和平衡常数,剖析了DNA切割反应。我们的结果揭示了存在两种酶构象,其相对丰度对核苷酸的存在敏感。在不存在核苷酸的情况下,主要的物种以扩散限制速率结合DNA,但不能有效地切割DNA。在存在AMPPNP的情况下,大多数酶转化为一种状态,其中DNA结合和释放极其缓慢,但允许DNA切割。建立了一个最小的动力学和热力学框架,该框架解释了在存在和不存在结合的AMPPNP的情况下两条DNA链切割的协同性,并包括动力学研究中揭示的构象步骤。该模型统一了现有的动力学、热力学和结构数据,以便根据各个反应步骤的顺序和速率以及反应路径上物种的物理性质来描述反应。此外,这个反应框架为未来深入分析拓扑异构酶II的能量转导、指导和解释未来的结构研究以及分析将拓扑异构酶转化为细胞毒素的药物机制提供了基础。