Suppr超能文献

LKB1、AMPK与骨骼肌代谢的调节

LKB1 and AMPK and the regulation of skeletal muscle metabolism.

作者信息

Koh Ho-Jin, Brandauer Josef, Goodyear Laurie J

机构信息

Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Curr Opin Clin Nutr Metab Care. 2008 May;11(3):227-32. doi: 10.1097/MCO.0b013e3282fb7b76.

Abstract

PURPOSE OF REVIEW

To address the role of LKB1 and AMP-activated protein kinase (AMPK) in glucose transport, fatty acid oxidation, and metabolic adaptations in skeletal muscle.

RECENT FINDINGS

Contraction-mediated skeletal muscle glucose transport is decreased in muscle-specific LKB1 knockout mice, but not in whole body AMPKalpha2 knockout mice or AMPKalpha2 inactive transgenic mice. Chronic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and beta-guanadinopropionic acid enhances mitochondrial function in skeletal muscle, but AICAR or exercise-induced increases in mitochondrial markers are preserved in skeletal muscles from whole body AMPKalpha2 or muscle-specific LKB1 knockout mice. Pharmacological activation of AMPK increases glucose transport and fatty acid oxidation in skeletal muscle. Therefore, chronic activation of AMPK may be beneficial in the treatment of obesity and type 2 diabetes.

SUMMARY

LKB1 and AMPK play important roles in regulating metabolism in resting and contracting skeletal muscle.

摘要

综述目的

探讨肝脏激酶B1(LKB1)和AMP活化蛋白激酶(AMPK)在骨骼肌葡萄糖转运、脂肪酸氧化及代谢适应中的作用。

最新发现

在肌肉特异性LKB1基因敲除小鼠中,收缩介导的骨骼肌葡萄糖转运减少,但在全身AMPKα2基因敲除小鼠或AMPKα2无活性转基因小鼠中未出现此现象。5-氨基咪唑-4-甲酰胺-1-β-D-呋喃核糖苷(AICAR)和β-胍基丙酸对AMPK的慢性激活可增强骨骼肌线粒体功能,但全身AMPKα2或肌肉特异性LKB1基因敲除小鼠骨骼肌中,AICAR或运动诱导的线粒体标志物增加得以保留。AMPK的药理学激活可增加骨骼肌葡萄糖转运和脂肪酸氧化。因此,AMPK的慢性激活可能对肥胖症和2型糖尿病的治疗有益。

总结

LKB1和AMPK在静息和收缩骨骼肌的代谢调节中发挥重要作用。

相似文献

1
LKB1 and AMPK and the regulation of skeletal muscle metabolism.
Curr Opin Clin Nutr Metab Care. 2008 May;11(3):227-32. doi: 10.1097/MCO.0b013e3282fb7b76.
2
Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR.
Am J Physiol Endocrinol Metab. 2004 Aug;287(2):E310-7. doi: 10.1152/ajpendo.00074.2004. Epub 2004 Apr 6.
3
LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle.
Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1572-9. doi: 10.1152/ajpendo.00371.2007. Epub 2007 Oct 9.
4
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction.
EMBO J. 2005 May 18;24(10):1810-20. doi: 10.1038/sj.emboj.7600667. Epub 2005 May 5.
5
AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction.
Am J Physiol Endocrinol Metab. 2005 Mar;288(3):E592-8. doi: 10.1152/ajpendo.00301.2004. Epub 2004 Nov 16.
6
Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle.
Am J Physiol Endocrinol Metab. 2006 Mar;290(3):E583-90. doi: 10.1152/ajpendo.00395.2005. Epub 2005 Oct 25.
8
Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle.
Biochem Biophys Res Commun. 2007 Oct 19;362(2):354-9. doi: 10.1016/j.bbrc.2007.07.154. Epub 2007 Aug 7.
9
AMP-activated protein kinase phosphorylates transcription factors of the CREB family.
J Appl Physiol (1985). 2008 Feb;104(2):429-38. doi: 10.1152/japplphysiol.00900.2007. Epub 2007 Dec 6.
10
Effect of acute activation of 5'-AMP-activated protein kinase on glycogen regulation in isolated rat skeletal muscle.
J Appl Physiol (1985). 2007 Mar;102(3):1007-13. doi: 10.1152/japplphysiol.01034.2006. Epub 2006 Nov 22.

引用本文的文献

1
Cellular Feimin enhances exercise performance by suppressing muscle thermogenesis.
Nat Metab. 2025 Jan;7(1):84-101. doi: 10.1038/s42255-024-01176-8. Epub 2025 Jan 2.
2
The association between the triglyceride-glucose index and sarcopenia: data from the NHANES 2011-2018.
Lipids Health Dis. 2024 Jul 19;23(1):219. doi: 10.1186/s12944-024-02201-1.
3
Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle.
Sports Med. 2024 May;54(5):1097-1119. doi: 10.1007/s40279-024-02007-2. Epub 2024 Mar 25.
4
7
Skeletal Muscle Metabolic Alternation Develops Sarcopenia.
Aging Dis. 2022 Jun 1;13(3):801-814. doi: 10.14336/AD.2021.1107. eCollection 2022 Jun.
9
Muscle alterations in the development and progression of cancer-induced muscle atrophy: a review.
J Appl Physiol (1985). 2020 Jan 1;128(1):25-41. doi: 10.1152/japplphysiol.00622.2019. Epub 2019 Nov 14.
10
Adipose tissue-specific knockout of AMPKα1/α2 results in normal AICAR tolerance and glucose metabolism.
Biochem Biophys Res Commun. 2019 Nov 12;519(3):633-638. doi: 10.1016/j.bbrc.2019.09.049. Epub 2019 Sep 17.

本文引用的文献

1
LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle.
Am J Physiol Endocrinol Metab. 2007 Dec;293(6):E1572-9. doi: 10.1152/ajpendo.00371.2007. Epub 2007 Oct 9.
2
Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift.
Diabetes. 2007 Aug;56(8):2062-9. doi: 10.2337/db07-0255. Epub 2007 May 18.
4
5
Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade.
Biochem J. 2007 Apr 1;403(1):139-48. doi: 10.1042/BJ20061520.
7
Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3.
Mol Cell Biol. 2006 Nov;26(22):8217-27. doi: 10.1128/MCB.00979-06. Epub 2006 Sep 11.
8
Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle.
Am J Physiol Endocrinol Metab. 2007 Jan;292(1):E331-9. doi: 10.1152/ajpendo.00243.2006. Epub 2006 Sep 5.
9
Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice.
Am J Physiol Endocrinol Metab. 2007 Jan;292(1):E196-202. doi: 10.1152/ajpendo.00366.2006. Epub 2006 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验