Suppr超能文献

用于治疗骨骼肌萎缩的表观遗传药物。

Epigenetic drugs in the treatment of skeletal muscle atrophy.

作者信息

Guasconi Valentina, Puri Pier Lorenzo

机构信息

Dulbecco Telethon Institute (DTI) at Fondazione Santa Lucia/EBRI, Rome, Italy.

出版信息

Curr Opin Clin Nutr Metab Care. 2008 May;11(3):233-41. doi: 10.1097/MCO.0b013e3282fa1810.

Abstract

PURPOSE OF REVIEW

A dynamic network of anabolic and catabolic pathways regulates skeletal muscle mass in adult organisms. Muscle atrophy is the detrimental outcome of an imbalance of this network. The purpose of this review is to provide a critical evaluation of different forms of muscle atrophy from a mechanistic and therapeutic point of view.

RECENT FINDINGS

The identification and molecular characterization of distinct pathways implicated in the pathogenesis of muscle atrophy have revealed potential targets for therapeutic interventions. However, an effective application of these therapies requires a better understanding of the relative contribution of these pathways to the development of muscle atrophy in distinct pathological conditions.

SUMMARY

We propose that the decline in anabolic signals ('passive atrophy') and activation of catabolic pathways ('active atrophy') contribute differently to the pathogenesis of muscle atrophy associated with distinct diseases or unfavorable conditions. Interestingly, these pathways might converge on common transcriptional effectors, suggesting that an optimal intervention should be directed to targets at the chromatin level. We provide the rationale for the use of epigenetic drugs such as deacetylase inhibitors, which target multiple signaling pathways implicated in the pathogenesis of muscle atrophy.

摘要

综述目的

合成代谢和分解代谢途径的动态网络调节成年生物体的骨骼肌质量。肌肉萎缩是该网络失衡的有害结果。本综述的目的是从机制和治疗角度对不同形式的肌肉萎缩进行批判性评估。

最新发现

与肌肉萎缩发病机制相关的不同途径的鉴定和分子特征揭示了治疗干预的潜在靶点。然而,这些疗法的有效应用需要更好地理解这些途径在不同病理条件下对肌肉萎缩发展的相对贡献。

总结

我们提出合成代谢信号的下降(“被动萎缩”)和分解代谢途径的激活(“主动萎缩”)对与不同疾病或不利条件相关的肌肉萎缩发病机制的贡献不同。有趣的是,这些途径可能汇聚于共同的转录效应因子,这表明最佳干预应针对染色质水平的靶点。我们提供了使用表观遗传药物(如脱乙酰酶抑制剂)的理论依据,这些药物靶向参与肌肉萎缩发病机制的多种信号通路。

相似文献

1
Epigenetic drugs in the treatment of skeletal muscle atrophy.
Curr Opin Clin Nutr Metab Care. 2008 May;11(3):233-41. doi: 10.1097/MCO.0b013e3282fa1810.
2
Disuse atrophy of human skeletal muscle: cell signaling and potential interventions.
Med Sci Sports Exerc. 2009 Oct;41(10):1860-8. doi: 10.1249/MSS.0b013e3181a6458a.
3
Molecular signaling pathways regulating muscle proteolysis during atrophy.
Curr Opin Clin Nutr Metab Care. 2005 May;8(3):271-5. doi: 10.1097/01.mco.0000165005.01331.45.
4
Mechanisms for maintaining muscle.
Curr Opin Support Palliat Care. 2012 Dec;6(4):451-6. doi: 10.1097/SPC.0b013e328359b681.
6
Regulation of muscle atrophy by microRNAs: 'AtromiRs' as potential target in cachexia.
Curr Opin Clin Nutr Metab Care. 2018 Nov;21(6):423-429. doi: 10.1097/MCO.0000000000000503.
7
Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy.
Am J Physiol Cell Physiol. 2010 Jun;298(6):C1291-7. doi: 10.1152/ajpcell.00531.2009. Epub 2010 Jan 20.
8
Proinflammatory cytokines and skeletal muscle.
Curr Opin Clin Nutr Metab Care. 2004 May;7(3):265-9. doi: 10.1097/00075197-200405000-00005.
9
Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy.
Cells. 2020 Aug 26;9(9):1970. doi: 10.3390/cells9091970.
10
Epigenetic control of skeletal muscle atrophy.
Cell Mol Biol Lett. 2024 Jul 8;29(1):99. doi: 10.1186/s11658-024-00618-1.

引用本文的文献

1
Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy.
Front Cell Dev Biol. 2022 Aug 30;10:964130. doi: 10.3389/fcell.2022.964130. eCollection 2022.
3
Plant Bioactives in the Treatment of Inflammation of Skeletal Muscles: A Molecular Perspective.
Evid Based Complement Alternat Med. 2022 Jul 20;2022:4295802. doi: 10.1155/2022/4295802. eCollection 2022.
4
Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia.
Cells. 2022 Jul 25;11(15):2293. doi: 10.3390/cells11152293.
7
The ERG1A K Channel Is More Abundant in Muscle from Cancer Patients Than that from Healthy Humans.
Diagnostics (Basel). 2021 Oct 12;11(10):1879. doi: 10.3390/diagnostics11101879.
10
Selecting Potential Pharmacological Interventions in Sarcopenia.
Drugs Aging. 2017 Apr;34(4):233-240. doi: 10.1007/s40266-017-0444-z.

本文引用的文献

2
FoxO3 controls autophagy in skeletal muscle in vivo.
Cell Metab. 2007 Dec;6(6):458-71. doi: 10.1016/j.cmet.2007.11.001.
3
Autophagy: process and function.
Genes Dev. 2007 Nov 15;21(22):2861-73. doi: 10.1101/gad.1599207.
4
The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle.
Cell Metab. 2007 Nov;6(5):376-85. doi: 10.1016/j.cmet.2007.09.009.
6
Involvement of the calcium-dependent proteolytic system in skeletal muscle aging.
Exp Gerontol. 2007 Nov;42(11):1088-98. doi: 10.1016/j.exger.2007.08.009. Epub 2007 Sep 14.
7
The pharmaceutical potential of histone deacetylase inhibitors.
Curr Pharm Des. 2007;13(25):2584-620. doi: 10.2174/138161207781663064.
9
Ubiquitination, phosphorylation, and acetylation--triple threat in muscle wasting.
J Cell Physiol. 2007 Dec;213(3):679-89. doi: 10.1002/jcp.21190.
10
A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs.
PLoS Genet. 2007 May 25;3(5):e79. doi: 10.1371/journal.pgen.0030079. Epub 2007 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验