Suppr超能文献

学习引导力量过程中肌肉与关节协调性的变化

Changes in muscle and joint coordination in learning to direct forces.

作者信息

Hasson Christopher J, Caldwell Graham E, van Emmerik Richard E A

机构信息

Biomechanics and Motor Control Laboratories, Department of Kinesiology, University of Massachusetts Amherst, 110 Totman Building, 30 Eastman Lane, Amherst, MA 01003-9258, United States.

出版信息

Hum Mov Sci. 2008 Aug;27(4):590-609. doi: 10.1016/j.humov.2008.02.015. Epub 2008 Apr 10.

Abstract

While it has been suggested that bi-articular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Participants were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male participants practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The mono-articular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force-directing. With practice, a loosening of the coupling between bi-articular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that participants were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination.

摘要

虽然有人认为双关节肌肉在引导外部反作用力方面具有特殊作用,但尚不清楚人类如何学会协调单关节和双关节肌肉来执行力引导任务。参与者被要求在单腿骑行过程中朝着指定目标方向引导踏板力。我们预期,通过练习,性能的提高将与关节扭矩模式以及单关节和双关节肌肉协调的特定变化相关联。九名男性参与者仅用左腿练习踩踏测力计,并被指示始终将施加的踏板力垂直于曲柄臂(目标方向)引导,并保持恒定的踩踏速度。经过一次练习后,施加的踏板力方向与目标方向之间的平均误差显著降低。这种性能的提高伴随着踝关节角运动量的显著减少以及膝关节和髋关节角运动量较小的增加。这与下肢关节扭矩的重新组织相吻合,即踝关节跖屈扭矩减小,膝关节和髋关节屈肌扭矩增加。单关节和双关节肌肉活动模式均出现了变化。单关节肌肉表现出更大的改变,并且似乎对机械功和力引导都有贡献。通过练习,观察到双关节大腿肌肉激活与关节扭矩共同调节之间的耦合变得松弛。结果表明参与者能够通过重新组织关节扭矩模式以及单关节和双关节肌肉协调来改变所施加踏板力的方向,从而学会一项复杂的动态力引导任务。

相似文献

1
Changes in muscle and joint coordination in learning to direct forces.
Hum Mov Sci. 2008 Aug;27(4):590-609. doi: 10.1016/j.humov.2008.02.015. Epub 2008 Apr 10.
3
A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling.
J Biomech. 1996 Jan;29(1):81-90. doi: 10.1016/0021-9290(95)00011-9.
4
The control of mono-articular muscles in multijoint leg extensions in man.
J Physiol. 1995 Apr 1;484 ( Pt 1)(Pt 1):247-54. doi: 10.1113/jphysiol.1995.sp020662.
5
The constrained control of force and position in multi-joint movements.
Neuroscience. 1992;46(1):197-207. doi: 10.1016/0306-4522(92)90019-x.
6
Muscular activity patterns in 1-legged vs. 2-legged pedaling.
J Sport Health Sci. 2021 Jan;10(1):99-106. doi: 10.1016/j.jshs.2020.01.003. Epub 2020 Jan 20.
7
Activation patterns of mono- and bi-articular arm muscles as a function of force and movement direction of the wrist in humans.
J Physiol. 1998 Apr 1;508 ( Pt 1)(Pt 1):313-24. doi: 10.1111/j.1469-7793.1998.313br.x.
8
Muscle activity patterns altered during pedaling at different body orientations.
J Biomech. 1996 Oct;29(10):1349-56. doi: 10.1016/0021-9290(96)00038-3.
9
10
Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.
J Neurophysiol. 1998 Sep;80(3):1341-51. doi: 10.1152/jn.1998.80.3.1341.

引用本文的文献

1
Muscular activity patterns in 1-legged vs. 2-legged pedaling.
J Sport Health Sci. 2021 Jan;10(1):99-106. doi: 10.1016/j.jshs.2020.01.003. Epub 2020 Jan 20.
3
Response to: Caution needed when interpreting muscle activity patterns during extremely low pedaling cadence.
J Sport Health Sci. 2021 Jan;10(1):109-110. doi: 10.1016/j.jshs.2020.06.002. Epub 2020 Jun 4.
4
The Role of Statins in Disease Modification and Cardiovascular Risk in Rheumatoid Arthritis.
Front Med (Lausanne). 2018 Feb 8;5:24. doi: 10.3389/fmed.2018.00024. eCollection 2018.
6
High-Speed Cycling Intervention Improves Rate-Dependent Mobility in Older Adults.
Med Sci Sports Exerc. 2017 Jan;49(1):106-114. doi: 10.1249/MSS.0000000000001069.
7
Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography.
Eur J Appl Physiol. 2016 Sep;116(9):1807-17. doi: 10.1007/s00421-016-3428-5. Epub 2016 Jul 23.
8
How to assess performance in cycling: the multivariate nature of influencing factors and related indicators.
Front Physiol. 2013 May 21;4:116. doi: 10.3389/fphys.2013.00116. eCollection 2013.

本文引用的文献

1
Pedal and Crank Kinetics in Uphill Cycling.
J Appl Biomech. 1998 Aug;14(3):245-259. doi: 10.1123/jab.14.3.245.
2
3
The effects of practice on limb kinematics in a throwing task.
J Mot Behav. 1989 Sep;21(3):245-64. doi: 10.1080/00222895.1989.10735480.
4
Muscle coordination in cycling: effect of surface incline and posture.
J Appl Physiol (1985). 1998 Sep;85(3):927-34. doi: 10.1152/jappl.1998.85.3.927.
5
Intermuscular co-ordination during fast contact control leg tasks in man.
Brain Res. 1997 Mar 21;751(2):239-46. doi: 10.1016/s0006-8993(96)01327-3.
6
Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters.
J Biomech. 1996 Sep;29(9):1223-30. doi: 10.1016/0021-9290(95)00178-6.
7
A theoretical basis for interpreting the force applied to the pedal in cycling.
J Biomech. 1993 Feb;26(2):155-65. doi: 10.1016/0021-9290(93)90046-h.
8
The control of mono-articular muscles in multijoint leg extensions in man.
J Physiol. 1995 Apr 1;484 ( Pt 1)(Pt 1):247-54. doi: 10.1113/jphysiol.1995.sp020662.
9
Measurement of pedal loading in bicycling: II. Analysis and results.
J Biomech. 1981;14(12):857-72. doi: 10.1016/0021-9290(81)90013-0.
10
A method for biomechanical analysis of bicycle pedalling.
J Biomech. 1985;18(9):631-44. doi: 10.1016/0021-9290(85)90019-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验